• Photonics Research
  • Vol. 10, Issue 1, 230 (2022)
Jiaqi Yuan1、2, Xuemei Cheng1、2、3、*, Xing Wang2, Tengfei Jiao1, and Zhaoyu Ren1、4、*
Author Affiliations
  • 1State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi’an 710069, China
  • 2State Key Laboratory of Transient Optics and Photonics, Chinese Academy of Sciences, Xi’an 710119, China
  • 3e-mail: xmcheng@nwu.edu.cn
  • 4e-mail: rzy@nwu.edu.cn
  • show less
    DOI: 10.1364/PRJ.423799 Cite this Article Set citation alerts
    Jiaqi Yuan, Xuemei Cheng, Xing Wang, Tengfei Jiao, Zhaoyu Ren. Single-scan polarization-resolved degenerate four-wave mixing spectroscopy using a vector optical field[J]. Photonics Research, 2022, 10(1): 230 Copy Citation Text show less
    References

    [1] A. J. Brown. Spectral curve fitting for automatic hyperspectral data analysis. IEEE Trans. Geosci. Remote Sens., 44, 1601-1608(2006).

    [2] A. J. Brown. Equivalence relations and symmetries for laboratory, LIDAR, and planetary Müeller matrix scattering geometries. J. Opt. Soc. Am. A, 31, 2789-2794(2014).

    [3] A. J. Brown, T. I. Michaels, S. Byrne, W. Sun, T. N. Titus, A. Colaprete, M. J. Wolff, G. Videen, C. J. Grund. The case for a modern multiwavelength, polarization-sensitive LIDAR in orbit around mars. J. Quant. Spectrosc. Radiat. Transfer, 153, 131-143(2015).

    [4] N. Gisin, G. Ribordy, W. Tittel, H. Zbinden. Quantum cryptography. Rev. Mod. Phys., 74, 145-195(2002).

    [5] A. E. Bracamonte, P. H. Vaccaro. Dissection of rovibronic band structure by polarization-resolved degenerate four-wave mixing spectroscopy. J. Chem. Phys., 119, 887-901(2003).

    [6] Z. Liu, Z. Wang, X. Wang, X. Xu, X. Chen, J. Cheng, X. Li, S. Chen, J. Xin, S. T. C. Wong. Fiber bundle based probe with polarization for coherent anti-Stokes Raman scattering microendoscopy imaging. Proc. SPIE, 8588, 85880F(2013).

    [7] A. M. Zheltikov, N. I. Koroteev, A. N. Naumov, V. N. Ochkin, S. Y. Savinov, S. N. Tskhai. Measurement of electric fields in a plasma with the aid of the coherent four-wave mixing polarisation technique. Quantum Electron., 29, 73-76(1999).

    [8] Y. Prior. Three-dimensional phase matching in four-wave mixing. Appl. Opt., 19, 1741-1743(1980).

    [9] G. Knopp, P. P. Radi, T. Gerber. Dispersed fs-FWM for investigations of low frequency vibrations of transient species in combustion. Chimia, 65, 339-341(2011).

    [10] X. Cheng, Z. Ren, J. Wang, Y. Miao, X. Xu, L. Jia, H. Fan, J. Bai. Quantitative measurement of rubidium isotope ratio using forward degenerate four-wave mixing. Spectrochim. Acta B Atom. Spectros., 70, 39-44(2012).

    [11] R. E. Compton. Nonlinear optics in non-equilibrium microplasmas(2011).

    [12] S. Adachi, Y. Takagi, J. Takeda, K. A. Nelson. Optical sampling four-wave-mixing experiment for exciton relaxation processes. Opt. Commun., 174, 291-298(2000).

    [13] S. Ye, S. Ma, F. Wei, H. Li. Intramolecular vibrational coupling in water molecules revealed by compatible multiple nonlinear vibrational spectroscopic measurements. Analyst, 137, 4981-4987(2012).

    [14] C. Krafft, B. Dietzek, J. Popp. Raman and CARS microspectroscopy of cells and tissues. Analyst, 134, 1046-1057(2009).

    [15] F. Munhoz, H. Rigneault, S. Brasselet. Polarization-resolved four-wave mixing microscopy for structural imaging in thick tissues. J. Opt. Soc. Am. B, 29, 1541-1550(2012).

    [16] I. V. Fedotov, P. A. Zhokhov, A. B. Fedotov, A. M. Zheltikov. Probing the ultrafast nonlinear-optical response of ionized atmospheric air by polarization-resolved four-wave mixing. Phys. Rev. A, 80, 015802(2009).

    [17] J. Tao, Z. Dong, J. K. W. Yang, Q. J. Wang. Plasmon excitation on flat graphene by s-polarized beams using four-wave mixing. Opt. Express, 23, 7809-7819(2015).

    [18] R. Paiella, G. Hunziker, K. J. Vahala, U. Koren. Measurement of the interwell carrier transport lifetime in multiquantum-well optical amplifiers by polarization-resolved four-wave mixing. Appl. Phys. Lett., 69, 4142-4144(1996).

    [19] F. Masia, W. Langbein, P. Borri. Polarization-resolved ultrafast dynamics of the complex polarizability in single gold nanoparticles. Phys. Chem. Chem. Phys., 15, 4226-4232(2013).

    [20] J. Ishi-Hayase, K. Akahane, N. Yamamoto, M. Kujiraoka, J. Inoue, K. Ema, M. Tsuchiya, M. Sasaki. Coherent dynamics of excitons in a stack of self-assembled InAs quantum dots at 1.5-μm waveband. J. Lumin., 119–120, 318-322(2006).

    [21] A. Shalit, Y. Prior. Time resolved polarization dependent single shot four wave mixing. Phys. Chem. Chem. Phys., 14, 13989-13996(2012).

    [22] Y. Kozawa, S. Sato. Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams. Opt. Express, 18, 10828-10833(2010).

    [23] D. P. Biss, K. S. Youngworth, T. G. Brown. Dark-field imaging with cylindrical-vector beams. Appl. Opt., 45, 470-479(2006).

    [24] G. Milione, T. A. Nguyen, J. Leach, D. A. Nolan, R. R. Alfano. Using the nonseparability of vector beams to encode information for optical communication. Opt. Lett., 40, 4887-4890(2015).

    [25] J. Wang, X. Yang, Z. Dou, S. Qiu, J. Liu, Y. Chen, M. Cao, H. Chen, D. Wei, K. Müller-Dethlefs, H. Gao, F. Li. Directly extracting the authentic basis of cylindrical vector beams by a pump-probe technique in an atomic vapor. Appl. Phys. Lett., 115, 221101(2019).

    [26] Y. Chen, F. Wang, L. Liu, C. Zhao, Y. Cai, O. Korotkova. Generation and propagation of a partially coherent vector beam with special correlation functions. Phys. Rev. A, 89, 013801(2014).

    [27] J. Che, P. Zhao, D. Ma, Y. Zhang. Kerr-nonlinearity-modulated dressed vortex four-wave mixing from photonic band gap. Opt. Express, 28, 18343-18350(2020).

    [28] J. Wang, X. Yang, Y. Li, Y. Chen, M. Cao, D. Wei, H. Gao, F. Li. Optically spatial information selection with hybridly polarized beam in atomic vapor. Photon. Res., 6, 451-456(2018).

    [29] T. Jiao, X. Cheng, Q. Zhang, W. Li, Z. Ren. Multi-wave mixing using a single vector optical field. Appl. Phys. Lett., 115, 201104(2019).

    [30] S. C. McEldowney, D. M. Shemo, R. A. Chipman. Vortex retarders produced from photo-aligned liquid crystal polymers. Opt. Express, 16, 7295-7308(2008).

    [31] D. A. Steck. Rubidium 87 D line data(2021).

    [32] R. W. Boyd. Nonlinear Optics(2002).

    Jiaqi Yuan, Xuemei Cheng, Xing Wang, Tengfei Jiao, Zhaoyu Ren. Single-scan polarization-resolved degenerate four-wave mixing spectroscopy using a vector optical field[J]. Photonics Research, 2022, 10(1): 230
    Download Citation