• Journal of Semiconductors
  • Vol. 41, Issue 5, 052202 (2020)
Jie Zhang1、2、3、4, Shixin Hou1、2、3、4, Renjie Li1、2、3、4, Bingbing Chen1、2、3、4, Fuhua Hou1、2、3、4, Xinghua Cui1、2、3、4, Jingjing Liu1、2、3、4, Qi Wang1、2、3、4, Pengyang Wang1、2、3、4, Dekun Zhang1、2、3、4, Ying Zhao1、2、3、4, and Xiaodan Zhang1、2、3、4
Author Affiliations
  • 1Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Tianjin 300350, China
  • 2Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin 300350, China
  • 3Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
  • 4Renewable Energy Conversion and Storage Center of Nankai University, Tianjin 300072, China
  • show less
    DOI: 10.1088/1674-4926/41/5/052202 Cite this Article
    Jie Zhang, Shixin Hou, Renjie Li, Bingbing Chen, Fuhua Hou, Xinghua Cui, Jingjing Liu, Qi Wang, Pengyang Wang, Dekun Zhang, Ying Zhao, Xiaodan Zhang. I/P interface modification for stable and efficient perovskite solar cells[J]. Journal of Semiconductors, 2020, 41(5): 052202 Copy Citation Text show less
    References

    [1] W S Yang, J H Noh, N J Jeon et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 348, 1234(2015).

    [2] Q Dong, Y Fang, Y Shao et al. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science, 347, 967(2015).

    [3] M I Saidaminov, A L Abdelhady, B Murali et al. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nat Commun, 6, 1(2015).

    [4] Q Han, S H Bae, P Sun et al. Single crystal formamidinium lead iodide (FAPbI3): insight into the structural, optical, and electrical properties. Adv Mater, 28, 2253(2016).

    [5] S Chu, Y Cui, N Liu. The path towards sustainable energy. Nat Mater, 16, 16(2017).

    [6] D P McMeekin, G Sadoughi, W Rehman et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science, 351, 151(2016).

    [7] A Kojima, K Teshima, Y Shirai et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 131, 6050(2009).

    [8] H S Kim, C R Lee, J H Im et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep, 2, 591(2012).

    [9] Q Jiang, Y Zhao, X Zhang et al. Surface passivation of perovskite film for efficient solar cells. Nat Photonics, 13, 460(2019).

    [10]

    [11] F C Hanusch, E Wiesenmayer, E Mankel et al. Efficient planar heterojunction perovskite solar cells based on formamidinium lead bromide. J Phys Chem Lett, 5, 2791(2014).

    [12]

    [13] T Xu, L Chen, Z Guo et al. Strategic improvement of the long-term stability of perovskite materials and perovskite solar cells. Phys Chem Chem Phys, 18, 27026(2016).

    [14] X Zheng, B Chen, J Dai et al. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat Energy, 2, 17102(2014).

    [15] W S Yang, B W Park, E H Jung et al. Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science, 356, 1376(2017).

    [16] F Wang, S Bai, W Tress et al. Defects engineering for high-performance perovskite solar cells. npj Flexible Electron, 2, 1(2018).

    [17] L Meng, C Sun, R Wang et al. Tailored phase conversion under conjugated polymer enables thermally stable perovskite solar cells with efficiency exceeding 21%. J Am Chem Soc, 140, 17255(2018).

    [18] Y Bai, X Meng, S Yang. Interface engineering for highly efficient and stable planar p–i–n perovskite solar cells. Adv Energy Mater, 8, 1701883(2018).

    [19] T S Sherkar, C Momblona, L Gil-Escrig et al. Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect ions. ACS Energy Lett, 2, 1214(2017).

    [20] M Moriya, D Hirotani, T Ohta et al. Architecture of the interface between the perovskite and hole-transport layers in perovskite solar cells. ChemSusChem, 9, 2634(2016).

    [21] H Tan, F Che, M Wei et al. Dipolar cations confer defect tolerance in wide-bandgap metal halide perovskites. Nat Commun, 9, 1(2018).

    [22] N Li, S Tao, Y Chen et al. Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nat Energy, 4, 408(2019).

    [23] P Wang, R Li, B Chen et al. Gradient energy alignment engineering for planar perovskite solar cells with efficiency over 23%. Adv Mater, 1905766(2020326).

    [24] Q Jiang, Z Chu, P Wang et al. Planar-structure perovskite solar cells with efficiency beyond 21%. Adv Mater, 29, 1703852(2017).

    [25] S H Turren-Cruz, A Hagfeldt, M Saliba. Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture. Science, 362, 449(2018).

    [26] Y Wang, T Wu, J Barbaud et al. Stabilizing heterostructures of soft perovskite semiconductors. Science, 365, 687(2019).

    [27] P Wang, Q Jiang, Y Zhao et al. Synergistic improvement of perovskite film quality for efficient solar cells via multiple chloride salt additives. Sci Bull, 63, 726(2018).

    [28] G Tumen-Ulzii, C Qin, D Klotz et al. Detrimental effect of unreacted PbI2 on the long-term stability of perovskite solar cells. Adv Mater, 1905035(20203216).

    [29] J Y Jeng, K C Chen, T Y Chiang et al. Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planar-heterojunction hybrid solar cells. Adv Mater, 26, 4107(2014).

    [30] J You, L Meng, T B Song et al. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat Nanotechnol, 11, 75(2016).

    [31] G Xu, P Bi, S Wang et al. Integrating ultrathin bulk-heterojunction organic semiconductor intermediary for high-performance low-bandgap perovskite solar cells with low energy loss. Adv Funct Mater, 28, 1804427(2018).

    [32] J Zhang, R Xue, G Xu et al. Self-doping fullerene electrolyte-based electron transport layer for all-room-temperature-processed high-performance flexible polymer solar cells. Adv Funct Mater, 28, 1705847(2018).

    [33] S Wang, T Sakurai, W Wen et al. Energy level alignment at interfaces in metal halide perovskite solar cells. Adv Mater Interfaces, 5, 1800260(2018).

    [34] X Li, D Bi, C Yi et al. A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells. Science, 353, 58(2016).

    [35] N K Noel, A Abate, S D Stranks et al. Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic–inorganic lead halide perovskites. ACS Nano, 8, 9815(2014).

    [36] Y Du, C Xin, W Huang et al. Polymeric surface modification of NiOx-based inverted planar perovskite solar cells with enhanced performance. ACS Sustain Chem Eng, 6, 16806(2018).

    [37] M A Lampert. Simplified theory of space-charge-limited currents in an insulator with traps. Phys Rev, 103, 1648(1956).

    [38] A A Zhumekenov, M I Saidaminov, M A Haque et al. Formamidinium lead halide perovskite crystals with unprecedented long carrier dynamics and diffusion length. ACS Energy Lett, 1, 32(2016).

    [39] M Zhang, Q Chen, R Xue et al. Reconfiguration of interfacial energy band structure for high-performance inverted structure perovskite solar cells. Nat Commun, 10, 1(2019).

    [40] S Wang, H Chen, J Zhang et al. Targeted therapy for interfacial engineering toward stable and efficient perovskite solar cells. Adv Mater, 31, 1903691(2019).

    Jie Zhang, Shixin Hou, Renjie Li, Bingbing Chen, Fuhua Hou, Xinghua Cui, Jingjing Liu, Qi Wang, Pengyang Wang, Dekun Zhang, Ying Zhao, Xiaodan Zhang. I/P interface modification for stable and efficient perovskite solar cells[J]. Journal of Semiconductors, 2020, 41(5): 052202
    Download Citation