• Journal of Semiconductors
  • Vol. 41, Issue 1, 012301 (2020)
Jialin Sun1、4, Chuncai Hou2、3、4, Hongmei Chen4, Jinchuan Zhang2, Ning Zhuo2, Jiqiang Ning5, Changcheng Zheng6, Zhanguo Wang2, Fengqi Liu2, and Ziyang Zhang1、4
Author Affiliations
  • 1School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, China
  • 2Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 3The 718th Research Institute of China Shipbuilding Industry Corporation, Handan 056027, China
  • 4Key Laboratory of Nanodevice and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
  • 5Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
  • 6Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan 215316, China
  • show less
    DOI: 10.1088/1674-4926/41/1/012301 Cite this Article
    Jialin Sun, Chuncai Hou, Hongmei Chen, Jinchuan Zhang, Ning Zhuo, Jiqiang Ning, Changcheng Zheng, Zhanguo Wang, Fengqi Liu, Ziyang Zhang. Quantum cascade superluminescent light emitters with high power and compact structure[J]. Journal of Semiconductors, 2020, 41(1): 012301 Copy Citation Text show less
    References

    [1] J Faist, F Capasso, D L Sivco et al. Quantum cascade laser. Science, 264, 553(1994).

    [2] M S Vitiello, G Scalari, B Williams et al. Quantum cascade lasers: 20 years of challenges. Opt Express, 23, 5167(2015).

    [3] Z Y Zhang, R A Hogg, X Q Lv et al. Self-assembled quantum-dot superluminescent light-emitting diodes. Adv Opt Photonics, 2, 201(2010).

    [4] S Riedi, F Cappelli, S Blaser et al. Broadband superluminescence, 5.9 μm to 7.2 μm, of a quantum cascade gain device. Opt Express, 23, 7184(2015).

    [5] N Zia, J Viheriala, E Koivusalo et al. GaSb superluminescent diodes with broadband emission at 2.55 μm. Appl Phys Lett, 112, 051106(2018).

    [6] M E Brezinski, J G Fujimoto. Optical coherence tomography: high-resolutionimaging in nontransparent tissue. IEEE J Sel Top Quantum Electron, 5, 1185(1999).

    [7] J G Fujimoto, C Pitris, S A Boppart et al. Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy. Neoplasia, 2, 9(2000).

    [8] Z Y Zhang, Z G Wang, B Xu et al. High-performance quantum-dot superluminescent diodes. IEEE Photon Technol Lett, 16, 27(2004).

    [9] Q Jiang, Z Y Zhang, M Hopkinson et al. High performance intermixed p-doped quantum dot superluminescent diodes at 1.2 μm. Electron Lett, 46, 295(2010).

    [10] S M Chen, K J Zhou, Z Y Zhang et al. Hybrid quantum well/quantum dot structure for broad spectral bandwidth emitters. IEEE J Sel Top Quant, 19, 1900209(2013).

    [11] A B Seddon. Mid-infrared (IR) – a hot topic: the potential for using mid-IR light for non-invasive early detection of skin cancer in vivo. Phys Status Solidi B, 250, 1020(2013).

    [12] A I Lopez-Lorente, B Mizaikoff. Mid-infrared spectroscopy for protein analysis: potential and challenges. Anal Bioanal Chem, 408, 2875(2016).

    [13] F F Wang, P Jin, J Wu et al. Active multi-mode-interferometer broadband superluminescent diodes. J Semicond, 37, 014006(2016).

    [14] I Zorin, R Su, A Prylepa et al. Mid-infrared Fourier-domain optical coherence tomography with a pyroelectric linear array. Opt Express, 26, 33428(2018).

    [15] E A Zibik, W H Ng, D G Revin et al. Broadband 6 μm < λ < 8 μm superluminescent quantum cascade light-emitting diodes. Appl Phys Lett, 88, 121109(2006).

    [16] N L Aung, Z Yu, Y Yu et al. High peak power (≥ 10 mW) quantum cascade superluminescent emitter. Appl Phys Lett, 105, 221111(2014).

    [17] M C Zheng, N L Aung, A Basak et al. High power spiral cavity quantum cascade superluminescent emitter. Opt Express, 23, 2713(2015).

    [18] F Causa, L Burrow. Ripple-free high-power super-luminescent diode arrays. IEEE J Quantum Electron, 43, 1055(2007).

    [19] C C Hou, H M Chen, J C Zhang et al. Near-infrared and mid-infrared semiconductor broadband light emitters. Light Sci Appl, 7, 17170(2018).

    [20] C C Hou, J L Sun, J Q Ning et al. Room-temperature quantum cascade superluminescent light emitters with wide bandwidth and high temperature stability. Opt Express, 26, 13730(2018).

    [21] A F Fercher, W Drexler, C K Hitzenberger et al. Optical coherence tomography—principles andapplications. Rep Prog Phys, 66, 239(2003).

    Jialin Sun, Chuncai Hou, Hongmei Chen, Jinchuan Zhang, Ning Zhuo, Jiqiang Ning, Changcheng Zheng, Zhanguo Wang, Fengqi Liu, Ziyang Zhang. Quantum cascade superluminescent light emitters with high power and compact structure[J]. Journal of Semiconductors, 2020, 41(1): 012301
    Download Citation