• Photonics Research
  • Vol. 12, Issue 3, 399 (2024)
Qi Wu1、2, Yixiao Zhu2、4、*, Xueyang Li1、5、*, Hexun Jiang2, Chen Cheng1, Mengfan Fu2, Yikun Zhang2, Qunbi Zhuge2, Zhaohui Li3, and Weisheng Hu1、2
Author Affiliations
  • 1Peng Cheng Laboratory, Shenzhen 518055, China
  • 2State Key Laboratory of Advanced Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • 3School of Electronics and Information Technology and Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou 510006, China
  • 4e-mail: yixiaozhu@sjtu.edu.cn
  • 5e-mail: xueyang.li@pcl.ac.cn
  • show less
    DOI: 10.1364/PRJ.498624 Cite this Article Set citation alerts
    Qi Wu, Yixiao Zhu, Xueyang Li, Hexun Jiang, Chen Cheng, Mengfan Fu, Yikun Zhang, Qunbi Zhuge, Zhaohui Li, Weisheng Hu. Four-dimensional direct detection receiver enabling Jones-space field recovery with phase and polarization diversity[J]. Photonics Research, 2024, 12(3): 399 Copy Citation Text show less
    References

    [1] Q. Cheng, M. Bahadori, M. Glick. Recent advances in optical technologies for data centers: a review. Optica, 5, 1354-1370(2018).

    [2] K. Zhong, X. Zhou, J. Huo. Digital signal processing for short-reach optical communications: a review of current technologies and future trends. J. Lightwave Technol., 36, 377-400(2018).

    [3] M. Chagnon. Optical communications for short reach. J. Lightwave Technol., 37, 1779-1797(2019).

    [4] K. Kikuchi. Fundamentals of coherent optical fiber communications. J. Lightwave Technol., 34, 157-179(2016).

    [5] C. Wang, M. Zhang, X. Chen. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101-104(2018).

    [6] M. He, M. Xu, Y. Ren. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nat. Photonics, 13, 359-364(2019).

    [7] D. Che, Q. Hu, W. Shieh. Linearization of direct detection optical channels using self-coherent subsystems. J. Lightwave Technol., 34, 516-524(2016).

    [8] C. Laperle, B. Villeneuve, Z. Zhang. Wavelength division multiplexing (WDM) and polarization mode dispersion (PMD) performance of a coherent 40 Gbit/s dual-polarization quadrature phase shift keying (DP-QPSK) transceiver. Optical Fiber Communication Conference, PDP16(2007).

    [9] G. Charlet, J. Renaudier, M. Salsi. Efficient mitigation of fiber impairments in an ultra-long haul transmission of 40 Gbit/s polarization-multiplexed data, by digital processing in a coherent receiver. Optical Fiber Communication Conference, PDP17(2007).

    [10] M. Xu, Y. Zhu, F. Pittala. Dual-polarization thin-film lithium niobite in-phase quadrature modulators for terabit-per-second transmission. Optica, 9, 61-62(2022).

    [11] X. Liu, A. R. Chraplyvy, P. J. Winzer. Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit. Nat. Photonics, 7, 560-568(2013).

    [12] S. T. Le, V. Aref, H. Buelow. Nonlinear signal multiplexing for communication beyond the Kerr nonlinearity limit. Nat. Photonics, 11, 570-576(2017).

    [13] J.-X. Cai, H. G. Batshon, M. V. Mazurczyk. 70.46 Tb/s over 7,600 km and 71.65 Tb/s over 6,970 km transmission in C + L band using coded modulation with hybrid constellation shaping and nonlinearity compensation. J. Lightwave Technol., 36, 114-121(2018).

    [14] T. Pfau, S. Hoffmann, R. Noé. Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations. J. Lightwave Technol., 27, 989-999(2009).

    [15] X. Liu, S. Chandrasekhar, A. Leven. Digital self-coherent detection. Opt. Express, 16, 792-803(2008).

    [16] A. Mecozzi, C. Antonelli, M. Shtaif. Kramers–Kronig coherent receiver. Optica, 3, 1220-1227(2016).

    [17] W. Shieh, C. Sun, H. Ji. Carrier-assisted differential detection. Light Sci. Appl., 9, 18(2020).

    [18] X. Li, M. O’Sullivan, Z. Xing. Asymmetric self-coherent detection. Opt. Express, 29, 25412-25427(2021).

    [19] D. Qian, N. Cvijetic, J. Hu. 108 Gb/s OFDMA-PON with polarization multiplexing and direct detection. J. Lightwave Technol., 28, 484-493(2010).

    [20] D. Che, A. Li, X. Chen. Stokes vector direct detection for short-reach optical communication. Opt. Lett., 39, 3110-3113(2014).

    [21] M. Morsy-Osman, M. Chagnon, M. Poulin. 224-Gb/s 10-km transmission of PDM PAM-4 at 1.3 μm using a single intensity-modulated laser and a direct-detection MIMO DSP-based receiver. J. Lightwave Technol., 33, 1417-1424(2015).

    [22] M. Chagnon, M. Morsy-Osman, D. Patel. Digital signal processing for dual-polarization intensity and inter-polarization phase modulation formats using Stokes detection. J. Lighwave Technol., 34, 188-195(2016).

    [23] M. Morsy-Osman, M. Chagnon, D. V. Plant. Four-dimensional modulation and stokes direct detection of polarization division multiplexed intensities, inter polarization phase and inter polarization differential phase. J. Lightwave Technol., 34, 1585-1592(2016).

    [24] W. Shieh, K. Hamid, D. Che. Invited Article: Polarization diversity and modulation for high-speed optical communications: architectures and capacity. APL Photonics, 1, 040801(2016).

    [25] D. Che, C. Sun, W. Shieh. Maximizing the spectral efficiency of Stokes vector receiver with optical field recovery. Opt. Express, 26, 28976-28981(2018).

    [26] D. Che, C. Sun, W. Shieh. Optical field recovery in Stokes space. J. Lightwave Technol., 37, 451-460(2019).

    [27] C. Antonelli, A. Mecozzi, M. Shtaif. Polarization multiplexing with the Kramers-Kronig receiver. J. Lightwave Technol., 35, 5418-5424(2017).

    [28] H. Ji, T. Ji, C. Sun. Four-dimensional direct detection receiver based on Stokes vector and differential polarization inner product. Asia Communications and Photonics Conference (ACP), T1B.1(2020).

    [29] R. W. Gerchberg. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik, 35, 237-246(1972).

    [30] J. R. Fienup. Phase retrieval algorithms: A comparison. Appl. Opt., 21, 2758-2769(1982).

    [31] H. Chen, N. K. Fontaine, J. M. Gene. Dual polarization full-field signal waveform reconstruction using intensity only measurements for coherent communications. J. Lightwave Technol., 38, 2587-2597(2020).

    [32] W. R. Peng, X. Wu, K.-M. Feng. Spectrally efficient direct-detected OFDM transmission employing an iterative estimation and cancellation technique. Opt. Express, 17, 9099-9111(2009).

    [33] Z. Li, M. Sezer Erkılınç, K. Shi. SSBI mitigation and Kramers-Kronig scheme in single-sideband direct-detection transmission with receiver-based electronic dispersion compensation. J. Lightwave Technol., 35, 1887-1893(2017).

    [34] Q. Wu, Y. Zhu, W. Hu. Carrier-assisted phase retrieval. J. Lightwave Technol., 40, 5583-5596(2022).

    [35] C. Ju, N. Liu, X. Chen. SSBI mitigation in A-RF-tone-based VSSB-OFDM system with a frequency-domain Volterra series equalizer. J. Lightwave Technol., 33, 4997-5006(2015).

    [36] X. Li, S. An, H. Ji. Deep-learning-enabled high-performance full-field direct detection with dispersion diversity. Opt. Express, 30, 11767-11788(2022).

    [37] E. Ciaramella. Polarization-independent receivers for low-cost coherent OOK systems. IEEE Photonics Technol. Lett., 26, 548-551(2014).

    [38] Y. Hu, X. Li, D. Mao. Transmission of net 200 Gbps/λ over 40 km of SMF using an integrated SiP phase-diverse receiver. European Conference on Optical Communication (ECOC), Th3B.6(2022).

    [39] J. Cho, L. Schmalen, P. J. Winzer. Normalized generalized mutual information as a forward error correction threshold for probabilistically shaped QAM. European Conference on Optical Communication (ECOC), M2D.2(2017).

    [40] J. Cho, P. J. Winzer. Probabilistic constellation shaping for optical fiber communications. J. Lightwave Technol., 37, 1590-1607(2019).

    [41] P. Schulte, G. Böcherer. Constant composition distribution matching. IEEE Trans. Inform. Theory, 62, 430-434(2016).

    [42] J. Cho, L. Schmalen. Construction of protographs for large-girth structured LDPC convolutional codes. IEEE International Conference on Communications, 4412-4417(2015).

    [43] X. Chen, J. Cho, G. Raybon. Single-wavelength and single-photodiode 700 Gb/s entropy-loaded PS-256-QAM and 200-GBaud PS-PAM-16 transmission over 10-km SMF. European Conference on Optical Communication (ECOC), Th3A-2(2020).

    [44] S. T. Le, K. Schuh. 465 Gbps single side band direct detection transmission over 40 km of SSMF using a single-ended photodiode. Optical Fiber Communication Conference and Exhibition (OFC), F2D.5(2021).

    [45] M. Chagnon, M. Morsy-Osman, D. V. Plant. Half-terabit single-carrier direct detect transceiver, formats, and DSP: analysis and demonstration. J. Lightwave Technol., 36, 447-458(2018).

    [46] D. Che, S. Chandrasekhar, X. Chen. Single-channel direct detection reception beyond 1 Tb/s. Optical Fiber Communication Conference and Exhibition (OFC), Th4B.7(2019).

    [47] B. Stern, H. Chen, K. Kim. Large dispersion silicon Bragg grating for full-field 40-GBd QPSK phase retrieval receiver. J. Lightwave Technol., 40, 7358-7363(2022).

    [48] J. Li, Z. Wang, H. Ji. Silicon photonic carrier-assisted differential detection receiver with high electrical spectral efficiency for short-reach interconnects. J. Lightwave Technol., 41, 919-925(2023).

    [49] G. Rademacher, B. J. Puttnam, R. S. Luís. Peta-bit-per-second optical communications system using a standard cladding diameter 15-mode fiber. Nat. Commun., 12, 4238(2021).

    [50] N. Bozinovic, Y. Yue, Y. Ren. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 340, 1545-1548(2013).

    [51] A. A. Jørgensen, D. Kong, M. R. Henriksen. Petabit-per-second data transmission using a chip-scale microcomb ring resonator source. Nat. Photonics, 16, 798-802(2022).

    Qi Wu, Yixiao Zhu, Xueyang Li, Hexun Jiang, Chen Cheng, Mengfan Fu, Yikun Zhang, Qunbi Zhuge, Zhaohui Li, Weisheng Hu. Four-dimensional direct detection receiver enabling Jones-space field recovery with phase and polarization diversity[J]. Photonics Research, 2024, 12(3): 399
    Download Citation