• Photonics Research
  • Vol. 12, Issue 3, 399 (2024)
Qi Wu1、2, Yixiao Zhu2、4、*, Xueyang Li1、5、*, Hexun Jiang2, Chen Cheng1, Mengfan Fu2, Yikun Zhang2, Qunbi Zhuge2, Zhaohui Li3, and Weisheng Hu1、2
Author Affiliations
  • 1Peng Cheng Laboratory, Shenzhen 518055, China
  • 2State Key Laboratory of Advanced Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • 3School of Electronics and Information Technology and Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou 510006, China
  • 4e-mail: yixiaozhu@sjtu.edu.cn
  • 5e-mail: xueyang.li@pcl.ac.cn
  • show less
    DOI: 10.1364/PRJ.498624 Cite this Article Set citation alerts
    Qi Wu, Yixiao Zhu, Xueyang Li, Hexun Jiang, Chen Cheng, Mengfan Fu, Yikun Zhang, Qunbi Zhuge, Zhaohui Li, Weisheng Hu. Four-dimensional direct detection receiver enabling Jones-space field recovery with phase and polarization diversity[J]. Photonics Research, 2024, 12(3): 399 Copy Citation Text show less

    Abstract

    Data centers, the engines of the global Internet, rely on powerful high-speed optical interconnects. In optical fiber communication, classic direct detection captures only the intensity of the optical field, while the coherent detection counterpart utilizes both phase and polarization diversities at the expense of requiring a narrow-linewidth and high-stability local oscillator (LO). Herein, we propose and demonstrate a four-dimensional Jones-space optical field recovery (4-D JSFR) scheme without an LO. The polarization-diverse full-field receiver structure captures information encoded in the intensity and phase of both polarizations, which can be subsequently extracted digitally. To our knowledge, our proposed receiver achieves the highest electrical spectral efficiency among existing direct detection systems and potentially provides similar electrical spectral efficiency as standard intradyne coherent detection systems. The fully recovered optical field extends the transmission distance beyond the limitations imposed by fiber chromatic dispersion. Moreover, the LO-free advantage makes 4-D JSFR suitable for photonic integration, offering a spectrally efficient and cost-effective solution for massively parallel data center interconnects. Our results may contribute to the ongoing developments in the theory of optical field recovery and the potential design considerations for future high-speed optical transceivers.
    i1(t)=|(C+S(t))h1(t)|2,i2(t)=|(C+S(t))h2(t)|2,

    View in Article

    i1(t)+i2(t)i1(t)+i2(t)=4|C|·I(t)(δ(t)+δ(tτ))+2|S(t)|2(δ(t)+δ(tτ)),

    View in Article

    i1(t)i2(t)i1(t)i2(t)=4|C|·Q(t)(δ(t)δ(tτ))+4Im{S(t)S*(tτ)}.

    View in Article

    CSPR=10lg2·PCPSx+PSy=10lgPCPSx.

    View in Article

    [X(t)Y(t)][abb*a*][C+Sx(t)C+Sy(t)],

    View in Article

    [ρκκκρκκκρ][X(t)0Y(t)]=[ρX(t)+κY(t)κX(t)+κY(t)κX(t)+ρY(t)],

    View in Article

    [i1(t)i2(t)i3(t)i4(t)i5(t)i6(t)]=η[|(ρX(t)+κY(t))h1(t)|2|(ρX(t)+κY(t))h2(t)|2|(κX(t)+κY(t))h1(t)|2|(κX(t)+κY(t))h2(t)|2|(κX(t)+ρY(t))h1(t)|2|(κX(t)+ρY(t))h2(t)|2].

    View in Article

    [R1(t)R2(t)R3(t)R4(t)R5(t)R6(t)R7(t)R8(t)][003000000300201020020102130101+300130101+31+301013001+301013][i1(t)i2(t)i3(t)i4(t)i5(t)i6(t)]=η[|(X(t)+Y(t))h1(t)|2|(X(t)+Y(t))h2(t)|2|(X(t)Y(t))h1(t)|2|(X(t)Y(t))h2(t)|2|(X(t)+jY(t))h1(t)|2|(X(t)+jY(t))h2(t)|2|(X(t)jY(t))h1(t)|2|(X(t)jY(t))h2(t)|2].

    View in Article

    X(t)+Y(t)=(a+a*+bb*)C+(ab*)Sx(t)+(a*+b)Sy(t),X(t)Y(t)=(aa*+b+b*)C+(a+b*)Sx(t)+(ba*)Sy(t),X(t)+jY(t)=(a+ja*+bjb*)C+(ajb*)Sx(t)+(ja*+b)Sy(t),X(t)jY(t)=(aja*+b+jb*)C+(a+jb*)Sx(t)+(bja*)Sy(t).

    View in Article

    CSPRX(t)+Y(t)(a,b)=P{(a+a*+bb*)C}P{(ab*)Sx(t)+(a*+b)Sy(t)}=2·((Re{a})2+(Im{b})2)·CthCSPRX(t)Y(t)(a,b)=P{(aa*+b+b*)C}P{(a+b*)Sx(t)+(ba*)Sy(t)}=2·((Re{b})2+(Im{a})2)·CthCSPRX(t)+jY(t)(a,b)=P{(a+ja*+bjb*)C}P{(ajb*)Sx(t)+(ja*+b)Sy(t)}=(1+Im{a2b2})·CthCSPRX(t)jY(t)(a,b)=P{(aja*+b+jb*)C}P{(a+jb*)Sx(t)+(bja*)Sy(t)}=(1Im{a2b2})·Cth.

    View in Article

    i1(t)=|C+S(t)+j(C+S(tτ))|2=|C+S(t)|2+|C+S(tτ)|2+j(C*+S*(t))(C+S(tτ))j(C+S(t))(C*+S*(tτ)),(A1)

    View in Article

    i2(t)=|C+S(t)j(C+S(tτ))|2=|C+S(t)|2+|C+S(tτ)|2j(C*+S*(t))(C+S(tτ))+j(C+S(t))(C*+S*(tτ)).(A2)

    View in Article

    i1(t)+i2(t)4|C|2=4Re{C*(S(t)+S(tτ))}+2|S(t)|2+2|S(tτ)|2=4|C|·I(t)(δ(t)+δ(tτ))+2|S(t)|2(δ(t)+δ(tτ)).(A3)

    View in Article

    i1(t)i2(t)=4Im{C*(S(t)S(tτ))}+4Im{S(t)S*(tτ)}=4|C|·Q(t)(δ(t)δ(tτ))+4Im{S(t)S*(tτ)}.(A4)

    View in Article

    I(t)Re{S(t)ejθc}=14|C|(i1(t)+i2(t)4|C|2)(δ(t)+δ(tτ))112|C||S(t)|2,Q(t)Im{S(t)ejθc}=14|C|(i1(t)i2(t))(δ(t)δ(tτ))11|C|Im{S(t)S*(tτ)}(δ(t)δ(tτ))1.(A5)

    View in Article

    i1(t)i1(t)=|C+S(t)|2|C|2=2|C|·I(t)+|S(t)|2,(B1)

    View in Article

    i2(t)i2(t)=|(C+S(t))h(t)|2|C|2=2|C|·(I(t)hI(t)Q(t)hQ(t))+|S(t)h(t)|2.(B2)

    View in Article

    I(t)Re{S(t)ejθc}=i1(t)i1(t)|S(t)|22|C|,Q(t)Im{S(t)ejθc}=((i1(t)i1(t))hI(t)(i2(t)i2(t))|S(t)|2hI(t)+|S(t)h(t)|22|C|)(hQ(t))1.(B3)

    View in Article

    Qi Wu, Yixiao Zhu, Xueyang Li, Hexun Jiang, Chen Cheng, Mengfan Fu, Yikun Zhang, Qunbi Zhuge, Zhaohui Li, Weisheng Hu. Four-dimensional direct detection receiver enabling Jones-space field recovery with phase and polarization diversity[J]. Photonics Research, 2024, 12(3): 399
    Download Citation