• Photonics Research
  • Vol. 10, Issue 10, B14 (2022)
Sicen Tao1、2, Tao Hou1, Yali Zeng1、2, Guangwei Hu2, Zixun Ge1, Junke Liao1, Shan Zhu1, Tan Zhang2, Cheng-Wei Qiu2、3、*, and Huanyang Chen1、4、*
Author Affiliations
  • 1Department of Physics, Institute of Electromagnetics and Acoustics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
  • 2Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
  • 3e-mail:
  • 4e-mail:
  • show less
    DOI: 10.1364/PRJ.463611 Cite this Article Set citation alerts
    Sicen Tao, Tao Hou, Yali Zeng, Guangwei Hu, Zixun Ge, Junke Liao, Shan Zhu, Tan Zhang, Cheng-Wei Qiu, Huanyang Chen. Anisotropic Fermat’s principle for controlling hyperbolic van der Waals polaritons[J]. Photonics Research, 2022, 10(10): B14 Copy Citation Text show less
    References

    [1] Z. Liu, H. Lee, Y. Xiong, C. Sun, X. Zhang. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science, 315, 1686(2007).

    [2] J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, X. Zhang. Optical negative refraction in bulk metamaterials of nanowires. Science, 321, 930(2008).

    [3] Z. Jacob, J.-Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, V. M. Shalaev. Engineering photonic density of states using metamaterials. Appl. Phys. B, 100, 215-218(2010).

    [4] A. Poddubny, I. Iorsh, P. Belov, Y. Kivshar. Hyperbolic metamaterials. Nat. Photonics, 7, 948-957(2013).

    [5] D. Lee, S. So, G. Hu, M. Kim, T. Badloe, H. Cho, J. Kim, H. Kim, C.-W. Qiu, J. Rho. Hyperbolic metamaterials: fusing artificial structures to natural 2D materials. eLight, 2, 1(2022).

    [6] P. Li, I. Dolado, F. J. Alfaro-Mozaz, F. Casanova, L. E. Hueso, S. Liu, J. H. Edgar, A. Y. Nikitin, S. Vélez, R. Hillenbrand. Infrared hyperbolic metasurface based on nanostructured van der Waals materials. Science, 359, 892-896(2018).

    [7] P. Li, G. Hu, I. Dolado, M. Tymchenko, C.-W. Qiu, F. J. Alfaro-Mozaz, F. Casanova, L. E. Hueso, S. Liu, J. H. Edgar, S. Vélez, A. Alu, R. Hillenbrand. Collective near-field coupling and nonlocal phenomena in infrared-phononic metasurfaces for nano-light canalization. Nat. Commun., 11, 3663(2020).

    [8] S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. Mcleod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, D. N. Basov. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science, 343, 1125-1129(2014).

    [9] Z. Zheng, N. Xu, S. L. Oscurato, M. Tamagnone, F. Sun, Y. Jiang, Y. Ke, J. Chen, W. Huang, W. L. Wilson, A. Ambrosio, S. Deng, H. Chen. A mid-infrared biaxial hyperbolic van der Waals crystal. Sci. Adv., 5, eaav8690(2019).

    [10] W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S.-T. Lee, R. Hillenbrand, Q. Bao. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature, 562, 557-562(2018).

    [11] F. Sun, W. Huang, Z. Zheng, N. Xu, Y. Ke, R. Zhan, H. Chen, S. Deng. Polariton waveguide modes in two-dimensional van der Waals crystals: an analytical model and correlative nano-imaging. Nanoscale, 13, 4845-4854(2021).

    [12] W. Ma, G. Hu, D. Hu, R. Chen, T. Sun, X. Zhang, Q. Dai, Y. Zeng, A. Alù, C.-W. Qiu, P. Li. Ghost hyperbolic surface polaritons in bulk anisotropic crystals. Nature, 596, 362-366(2021).

    [13] Z. Jacob, L. V. Alekseyev, E. Narimanov. Optical hyperlens: far-field imaging beyond the diffraction limit. Opt. Express, 14, 8247-8256(2006).

    [14] A. Salandrino, N. Engheta. Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations. Phys. Rev. B, 74, 075103(2006).

    [15] A. S. Potemkin, A. N. Poddubny, P. A. Belov, Y. S. Kivshar. Green function for hyperbolic media. Phys. Rev. A, 86, 023848(2012).

    [16] A. N. Poddubny, P. A. Belov, P. Ginzburg, A. V. Zayats, Y. S. Kivshar. Microscopic model of Purcell enhancement in hyperbolic metamaterials. Phys. Rev. B, 86, 035148(2012).

    [17] G. Hu, Q. Ou, G. Si, Y. Wu, J. Wu, Z. Dai, A. Krasnok, Y. Mazor, Q. Zhang, Q. Bao, C.-W. Qiu, A. Alù. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature, 582, 209-213(2020).

    [18] J. Duan, N. Capote-Robayna, J. Taboada-Gutiérrez, G. Álvarez-Pérez, I. Prieto, J. Martín-Sánchez, A. Y. Nikitin, P. Alonso-González. Twisted nano-optics: manipulating light at the nanoscale with twisted phonon polaritonic slabs. Nano Lett., 20, 5323-5329(2020).

    [19] Z. Dai, G. Hu, G. Si, Q. Ou, Q. Zhang, S. Balendhran, F. Rahman, B. Y. Zhang, J. Z. Ou, G. Li, A. Alù, C.-W. Qiu, Q. Bao. Edge-oriented and steerable hyperbolic polaritons in anisotropic van der Waals nanocavities. Nat. Commun., 11, 6086(2020).

    [20] K. Chaudhary, M. Tamagnone, X. Yin, C. M. Spägele, S. L. Oscurato, J. Li, C. Persch, R. Li, N. A. Rubin, L. A. Jauregui, K. Watanabe, T. Taniguchi, P. Kim, M. Wuttig, J. H. Edgar, A. Ambrosio, F. Capasso. Polariton nanophotonics using phase-change materials. Nat. Commun., 10, 4487(2019).

    [21] Z. Zheng, J. Jiang, N. Xu, X. Wang, W. Huang, Y. Ke, S. Zhang, H. Chen, S. Deng. Controlling and focusing in-plane hyperbolic phonon polaritons in α-MoO3 with a curved plasmonic antenna. Adv. Mater., 34, 2104164(2022).

    [22] J. Duan, G. Álvarez-Pérez, A. I. F. Tresguerres-Mata, J. Taboada-Gutiérrez, K. V. Voronin, A. Bylinkin, B. Chang, S. Xiao, S. Liu, J. H. Edgar, J. I. Martín, V. S. Volkov, R. Hillenbrand, J. Martín-Sánchez, A. Y. Nikitin, P. Alonso-González. Planar refraction and lensing of highly confined polaritons in anisotropic media. Nat. Commun., 12, 4325(2021).

    [23] Y. Zeng, Q. Ou, L. Liu, C. Zheng, Z. Wang, Y. Gong, X. Liang, Y. Zhang, G. Hu, Z. Yang, C. W. Qiu, Q. Bao, H. Chen, Z. Dai. Tailoring topological transitions of anisotropic polaritons by interface engineering in biaxial crystals. Nano Lett., 22, 4260-4268(2022).

    [24] U. Leonhardt. Optical conformal mapping. Science, 312, 1777-1780(2006).

    [25] J. B. Pendry, D. Schurig, D. R. Smith. Controlling electromagnetic fields. Science, 312, 1780-1782(2006).

    [26] J. B. Pendry, Y. Luo, R. K. Zhao. Transforming the optical landscape. Science, 348, 521-524(2015).

    [27] D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith. Metamaterial electromagnetic cloak at microwave frequencies. Science, 314, 977-980(2006).

    [28] H. Chen, B. Hou, S. Chen, X. Ao, W. Wen, C. T. Chan. Design and experimental realization of a broadband transformation media field rotator at microwave frequencies. Phys. Rev. Lett., 102, 183903(2009).

    [29] C. Sheng, H. Liu, H. Chen, S. Zhu. Definite photon deflections of topological defects in metasurfaces and symmetry-breaking phase transitions with material loss. Nat. Commun., 9, 4271(2018).

    [30] I. I. Smolyaninov, E. Hwang, E. Narimanov. Hyperbolic metamaterial interfaces: Hawking radiation from Rindler horizons and spacetime signature transitions. Phys. Rev. B, 85, 235122(2012).

    [31] I. I. Smolyaninov, E. E. Narimanov. Metric signature transitions in optical metamaterials. Phys. Rev. Lett., 105, 067402(2010).

    [32] S. Fumeron, B. Berche, F. Santos, E. Pereira, F. Moraes. Optics near a hyperbolic defect. Phys. Rev. A, 92, 063806(2015).

    [33] S. Dehdashti, A. Shahsafi, B. Zheng, L. Shen, Z. Wang, R. Zhu, H. Chen, H. Chen. Conformal hyperbolic optics. Phys. Rev. Res., 3, 033281(2021).

    [34] J. L. Synge. The absolute optical instrument. Trans. Amer. Math. Soc., 44, 32-46(1938).

    [35] M. Born, E. Wolf. Principles of Optics(2006).

    [36] R. K. Luneburg. Mathematical Theory of Optics(1964).

    [37] U. Leonhardt, T. Philbin. Geometry and Light: The Science of Invisibility(2010).

    [38] A. Patsyk, U. Sivan, M. Segev, M. A. Bandres. Observation of branched flow of light. Nature, 583, 60-65(2020).

    [39] H. Gao, B. Zhang, S. G. Johnson, G. Barbastathis. Design of thin-film photonic metamaterial Lüneburg lens using analytical approach. Opt. Express, 20, 1617-1628(2012).

    [40] C. Joas, C. Lehner. The classical roots of wave mechanics: Schrödinger’s transformations of the optical-mechanical analogy. Stud. Hist. Philos. Mod. Phys., 40, 338-351(2009).

    [41] G. Hu, A. Krasnok, Y. Mazor, C.-W. Qiu, A. Alù. Moiré hyperbolic metasurfaces. Nano Lett., 20, 3217-3224(2020).

    [42] Z. Chen, M. Segev. Highlighting photonics: looking into the next decade. eLight, 1, 2(2021).

    [43] Z. Chen, W. Zhou, B. Zhang, C. H. Yu, J. Zhu, W. Lu, S. C. Shen. Realization of anisotropic diamagnetic Kepler problem in a solid state environment. Phys. Rev. Lett., 102, 244103(2009).

    [44] W. Zhou, Z. Chen, B. Zhang, C. H. Yu, W. Lu, S. C. Shen. Magnetic field control of the quantum chaotic dynamics of hydrogen analogs in an anisotropic crystal field. Phys. Rev. Lett., 105, 024101(2010).

    Sicen Tao, Tao Hou, Yali Zeng, Guangwei Hu, Zixun Ge, Junke Liao, Shan Zhu, Tan Zhang, Cheng-Wei Qiu, Huanyang Chen. Anisotropic Fermat’s principle for controlling hyperbolic van der Waals polaritons[J]. Photonics Research, 2022, 10(10): B14
    Download Citation