• Photonics Research
  • Vol. 10, Issue 10, B14 (2022)
Sicen Tao1、2, Tao Hou1, Yali Zeng1、2, Guangwei Hu2, Zixun Ge1, Junke Liao1, Shan Zhu1, Tan Zhang2, Cheng-Wei Qiu2、3、*, and Huanyang Chen1、4、*
Author Affiliations
  • 1Department of Physics, Institute of Electromagnetics and Acoustics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
  • 2Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
  • 3e-mail:
  • 4e-mail:
  • show less
    DOI: 10.1364/PRJ.463611 Cite this Article Set citation alerts
    Sicen Tao, Tao Hou, Yali Zeng, Guangwei Hu, Zixun Ge, Junke Liao, Shan Zhu, Tan Zhang, Cheng-Wei Qiu, Huanyang Chen. Anisotropic Fermat’s principle for controlling hyperbolic van der Waals polaritons[J]. Photonics Research, 2022, 10(10): B14 Copy Citation Text show less

    Abstract

    Transformation optics (TO) facilitates flexible designs of spatial modulation of optical materials via coordinate transformations, thus, enabling on-demand manipulations of electromagnetic waves. However, the application of TO theory in control of hyperbolic waves remains elusive due to the spatial metric signature transition from (+,+) to (-,+) of a two-dimensional hyperbolic geometry. Here, we proposed a distinct Pythagorean theorem, which leads to establishing an anisotropic Fermat’s principle. It helps to construct anisotropic geometries and is a powerful tool for manipulating hyperbolic waves at the nanoscale and polaritons. Making use of absolute instruments, the excellent collimating and focusing behaviors of naturally in-plane hyperbolic polaritons in van der Waals αMoO3 layers are demonstrated, which opens up a new way for polaritons manipulation.
    ε=μ=[10001000n2(x,y)],

    View in Article

    x=μyx,y=μxy,

    View in Article

    ε=μ=[μxμy000μyμx000μxμyn2(μyx,μxy)].

    View in Article

    w=μyx+iμxy.

    View in Article

    r=μyx2+μxy2,

    View in Article

    ds2=n2dl2=n2(μydx2+μxdy2)=εzμydx2+εzμxdy2,

    View in Article

    n(r)=2(EU),

    View in Article

    ε=μ=[μx000μy000n2(r)],

    View in Article

    ω2=(cnk)2=c2n2(kx2μy+ky2μx).

    View in Article

    {×E=iωμ0H×H=iωε0ε^E.

    View in Article

    kzd=arctan(α1ε1εykz)+arctan(α3ε3εykz)+mπ,

    View in Article

    q2=ky2=μxk02n2

    View in Article

    ddξLv=Lr,(A1)

    View in Article

    ds=nμydx2+μxdy2=nμydx2dξ2+μxdy2dξ2dξ=Ldξ.(A2)

    View in Article

    L=nμydx2dξ2+μxdy2dξ2=nμyvx2+μxvy2=n2v2.(A3)

    View in Article

    dξ=dln.(A4)

    View in Article

    v=|drdξ|=n|drdl|=n.(A5)

    View in Article

    d2rdξ2=n22.(A6)

    View in Article

    U=n22+E,(A7)

    View in Article

    iqEzEyz=iωμ0Hx,Hxz=iωε0εyEy,iqHx=iωε0εzEz,(C1)

    View in Article

    2Hxz2+(k02εyεyq2εz)Hx=0,0zd.(C2)

    View in Article

    2Hxz2+(k02ε1q2)Hx=0,zd,(C3)

    View in Article

    2Hxz2+(k02ε3q2)Hx=0,z0.(C4)

    View in Article

    Hx={[Acos(kzd)+Bsin(kzd)]exp[α1(zd)],zd,Acos(kzz)+Bsin(kzz),0zd,Aexp(α3z),z0,(C5)

    View in Article

    Ey={α1iωε0ε1[Acos(kzd)+Bsin(kzd)]exp[α1(zd)],zd,kziωε0εy[Asin(kzz)+Bcos(kzz)],0zd,α3iωε0ε3Aexp(α3z),z0.(C6)

    View in Article

    M(AB)=(α3ε3kzεyα1ε1cos(kzd)+kzεysin(kzd)α1ε1sin(kzd)kzεycos(kzd))(AB)=0.(C7)

    View in Article

    kzd=arctan(α1ε1εykz)+arctan(α3ε3εykz)+mπ.(C8)

    View in Article

    k02εyεyq2εzd=arctan(q2k02ε1ε1εzεyk02εzq2)+arctan(q2k02ε3ε3εzεyk02εzq2)+mπ.(C9)

    View in Article

    Sicen Tao, Tao Hou, Yali Zeng, Guangwei Hu, Zixun Ge, Junke Liao, Shan Zhu, Tan Zhang, Cheng-Wei Qiu, Huanyang Chen. Anisotropic Fermat’s principle for controlling hyperbolic van der Waals polaritons[J]. Photonics Research, 2022, 10(10): B14
    Download Citation