• Journal of Semiconductors
  • Vol. 41, Issue 12, 122501 (2020)
Zhiguo Sun1, Bo Cai1, Xi Chen1, Wenxian Wei2, Xiaoming Li1, Dandan Yang1, Cuifang Meng1, Ye Wu1, and Haibo Zeng1
Author Affiliations
  • 1MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
  • 2Testing Center, Yangzhou University, Yangzhou 225009, China
  • show less
    DOI: 10.1088/1674-4926/41/12/122501 Cite this Article
    Zhiguo Sun, Bo Cai, Xi Chen, Wenxian Wei, Xiaoming Li, Dandan Yang, Cuifang Meng, Ye Wu, Haibo Zeng. Prediction and observation of defect-induced room-temperature ferromagnetism in halide perovskites[J]. Journal of Semiconductors, 2020, 41(12): 122501 Copy Citation Text show less
    References

    [1] I Žutić, J Fabian, Sarma S Das. Spintronics: Fundamentals and applications. Rev Mod Phys, 76, 323(2004).

    [2] B Qi, S Ólafsson, H P Gíslason. Vacancy defect-induced d0 ferromagnetism in undoped ZnO nanostructures: Controversial origin and challenges. Prog Mater Sci, 90, 45(2017).

    [3] Y Matsumoto, M Murakami, T Shono et al. Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science, 291, 854(2001).

    [4] P Sharma, A Gupta, K V Rao et al. Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO. Nat Mater, 2, 673(2003).

    [5] S B Ogale, R J Choudhary, J Buban et al. High temperature ferromagnetism with a giant magnetic moment in transparent Co-doped SnO2−δ. Phys Rev Lett, 91, 077205(2003).

    [6] V Fernandes, J J Klein, o N Mattoso et al. Room temperature ferromagnetism in Co-doped CeO2 films on Si(001). Phys Rev B, 75, 121304(R)(2007).

    [7] M L Reed, N A El-Masry, H H Stadelmaier et al. Room temperature ferromagnetic properties of (Ga, Mn)N. Appl Phys Lett, 79, 3473(2001).

    [8] J M D Coey. d0 Ferromagnetism. Solid State Sci, 7, 660(2005).

    [9] A Sundaresan, R Bhargavi, N Rangarajan et al. Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides. Phys Rev B, 74, 161306(2006).

    [10] A K Rumaiz, B Ali, A Ceylan et al. Experimental studies on vacancy induced ferromagnetism in undoped TiO2. Solid State Commun, 144, 334(2007).

    [11] P Zhan, W P Wang, C Liu et al. Oxygen vacancy–induced ferromagnetism in un-doped ZnO thin films. J Appl Phys, 111, 033501(2012).

    [12] G Niu, E Hildebrandt, M A Schubert et al. Oxygen vacancy induced room temperature ferromagnetism in Pr-doped CeO2 thin films on silicon. ACS Appl Mater Interfaces, 6, 17496(2014).

    [13] B Roul, M K Rajpalke, T N Bhat et al. Experimental evidence of Ga-vacancy induced room temperature ferromagnetic behavior in GaN films. Appl Phys Lett, 99, 162512(2011).

    [14] H X Wang, Z C Zong, Y Yan. Mechanism of multi-defect induced ferromagnetism in undoped rutile TiO2. J Appl Phys, 115, 233909(2014).

    [15] X P Han, J Lee, H I Yoo. Oxygen-vacancy-induced ferromagnetism in CeO2 from first principles. Phys Rev B, 79, 100403(2009).

    [16] P Dev, Y Xue, P H Zhang. Defect-Induced intrinsic magnetism in wide-gap III nitrides. Phys Rev Lett, 100, 117204(2008).

    [17] Y R Wang, J Y Piao, G Z Xing et al. Zn vacancy induced ferromagnetism in K doped ZnO. J Mater Chem C, 3, 11953(2015).

    [18] C H Ahn, Y Y Kim, D C Kim et al. Erratum: “A comparative analysisof deep level emission in ZnO layers deposited by various methods” [J. Appl. Phys. 105, 013502 (2009)]. J Appl Phys, 105, 089902(2009).

    [19] F Fabbri, M Villani, A Catellani et al. Zn vacancy induced green luminescence on non-polar surfaces in ZnO nanostructures. Sci Rep, 4, 5158(2014).

    [20] B J Morgan, G W Watson. Polaronic trapping of electrons and holes by native defects in anatase TiO2. Phys Rev B, 80, 233102(2009).

    [21] J L Lyons, C G van de Walle. Computationally predicted energiesand properties of defects in GaN. npj Comput Mater, 3, 12(2017).

    [22] Q A Akkerman, G Rainò, M V Kovalenko et al. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat Mater, 17, 394(2018).

    [23] A Walsh, D O Scanlon, S Y Chen et al. Self-regulation mechanism for charged point defects in hybrid halide perovskites. Angew Chem Int Ed, 54, 1791(2015).

    [24] Q F Dong, Y J Fang, Y C Shao et al. Solar cells. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science, 347, 967(2015).

    [25] A Dutta, R K Behera, P Pal et al. Near-unity photoluminescence quantum efficiency for all CsPbX3 (X = Cl, Br, and I) perovskite nanocrystals: A generic synthesis approach. Angew Chem Int Ed, 58, 5552(2019).

    [26] N J Jeon, H Na, E H Jung et al. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat Energy, 3, 682(2018).

    [27] K Lin, J Xing, L N Quan et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature, 562, 245(2018).

    [28] Y Cao, N N Wang, H Tian et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature, 562, 249(2018).

    [29] W J Yin, T T Shi, Y F Yan. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl Phys Lett, 104, 063903(2014).

    [30] J Kang, L W Wang. High defect tolerance in lead halide perovskite CsPbBr3. J Phys Chem Lett, 8, 489(2017).

    [31] Y X Zhai, S Baniya, C Zhang et al. Giant Rashba splitting in 2D organic-inorganic halide perovskites measured by transient spectroscopies. Sci Adv, 3, e1700704(2017).

    [32] C Zhang, D L Sun, Z G Yu et al. Field-induced spin splitting and anomalous photoluminescence circular polarization in CH3NH3PbI3 films at high magnetic field. Phys Rev B, 97, 134412(2018).

    [33] D L Sun, C Zhang, M Kavand et al. Surface-enhanced spin current to charge current conversion efficiency in CH3NH3PbBr3-based devices. J Chem Phys, 151, 174709(2019).

    [34] J Wang, C Zhang, H Liu et al. Spin-optoelectronic devices basedon hybrid organic-inorganic trihalide perovskites. Nat Commun, 10, 129(2019).

    [35] . Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B, 54, 11169(1996).

    [36] J P Perdew, A Ruzsinszky, G I Csonka et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys Rev Lett, 100, 136406(2008).

    [37] P Jakes, J Zimmermann, H von Seggern et al. Eu2+-doped CsBr photostimulable X-ray storage phosphors: Analysis of defect structure by high-frequency EPR. Funct Mater Lett, 7, 1350073(2014).

    [38] M Coey, K Ackland, M Venkatesan et al. Collective magnetic response of CeO2 nanoparticles. Nat Phys, 12, 694(2016).

    [39] J M D Coey. Magnetism in d0 oxides. Nat Mater, 18, 652(2019).

    [40] Y B Yuan, J S Huang. Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability. Acc Chem Res, 49, 286(2016).

    [41] Z J Yong, S Q Guo, J P Ma et al. Doping-enhanced short-range order of perovskite nanocrystals for near-unity violet luminescence quantum yield. J Am Chem Soc, 140, 9942(2018).

    [42] A Kaminski, S Das Sarma. Polaron percolation in diluted magnetic semiconductors. Phys Rev Lett, 88, 247202(2002).

    [43] J M D Coey, M Venkatesan, C B Fitzgerald. Donor impurity band exchange in dilute ferromagnetic oxides. Nat Mater, 4, 173(2005).

    [44] Y Kang, S Han. Intrinsic carrier mobility of cesium lead halide perovskites. Phys Rev Appl, 10, 044013(2018).

    [45] F Pan, C Song, X J Liu et al. Ferromagnetism and possible application in spintronics of transition-metal-doped ZnO films. Mater Sci Eng R, 62, 1(2008).

    Zhiguo Sun, Bo Cai, Xi Chen, Wenxian Wei, Xiaoming Li, Dandan Yang, Cuifang Meng, Ye Wu, Haibo Zeng. Prediction and observation of defect-induced room-temperature ferromagnetism in halide perovskites[J]. Journal of Semiconductors, 2020, 41(12): 122501
    Download Citation