• Laser & Optoelectronics Progress
  • Vol. 59, Issue 23, 2300002 (2022)
Ke Li, Yandong Gong*, and Zhuo Zhang
Author Affiliations
  • School of Instrument Science and Opto-Electronic Engineering, Beijing Information Science and Technology University, Beijing 100192, China
  • show less
    DOI: 10.3788/LOP202259.2300002 Cite this Article Set citation alerts
    Ke Li, Yandong Gong, Zhuo Zhang. Research Progress of φ-OTDR Noise Reduction Processing[J]. Laser & Optoelectronics Progress, 2022, 59(23): 2300002 Copy Citation Text show less
    References

    [1] Taylor H F, Lee C E. Apparatus and method for fiber optic intrusion sensing[P].

    [2] Healey P. Fading rates in coherent OTDR[J]. Electronics Letters, 20, 443-444(1984).

    [3] Shan Y Y, Dong J Y, Zeng J et al. A broadband distributed vibration sensing system assisted by a distributed feedback interferometer[J]. IEEE Photonics Journal, 10, 6800910(2018).

    [4] Chen D, Liu Q W, He Z Y. 108-km distributed acoustic sensor with 220-pε√Hz strain resolution and 5-m spatial resolution[J]. Journal of Lightwave Technology, 37, 4462-4468(2019).

    [5] Muanenda Y, Faralli S, Oton C J et al. Dynamic phase extraction in a modulated double-pulse φ-OTDR sensor using a stable homodyne demodulation in direct detection[J]. Optics Express, 26, 687-701(2018).

    [6] Trautz R, Daley T, Miller D et al. Geophysical monitoring using active seismic techniques at the Citronelle Alabama CO2 storage demonstration site[J]. International Journal of Greenhouse Gas Control, 99, 103084(2020).

    [7] Jiang J L, Wang Z N, Wang Z T et al. Continuous chirped-wave phase-sensitive optical time domain reflectometry[J]. Optics Letters, 46, 685-688(2021).

    [8] Mei X W, Pang F F, Liu H H et al. Fast coarse-fine locating method for φ-OTDR[J]. Optics Express, 26, 2659-2667(2018).

    [9] Marra G, Clivati C, Luckett R et al. Ultrastable laser interferometry for earthquake detection with terrestrial and submarine cables[J]. Science, 361, 486-490(2018).

    [10] Zhang Y. Study of pattern disturbance recognition for Φ-OTDR fiber-optic distributed sensor system[D](2016).

    [11] Gong Y D, Li K, Zhang Z. Investigation on low cost optical fiber sensor interrogator[J]. Instruments and Experimental Techniques, 64, 765-767(2021).

    [12] Zhang Y X, Xu Y M, Shan Y Y et al. Polarization dependence of phase-sensitive optical time-domain reflectometry and its suppression method based on orthogonal-state of polarization pulse pair[J]. Optical Engineering, 55, 074109(2016).

    [13] Yu Z J. Research on polarization dependence of distributed vibration sensing based on Φ-OTDR[D](2017).

    [14] Bao X Y, Wang Y. Recent advancements in Rayleigh scattering-based distributed fiber sensors[J]. Advanced Devices & Instrumentation, 2021, 1-17(2021).

    [15] Pang F F, He M T, Liu H H et al. A fading-discrimination method for distributed vibration sensor using coherent detection of Φ-OTDR[J]. IEEE Photonics Technology Letters, 28, 2752-2755(2016).

    [16] Zhou J, Pan Z Q, Ye Q et al. Characteristics and explanations of interference fading of a Φ-OTDR with a multi-frequency source[J]. Journal of Lightwave Technology, 31, 2947-2954(2013).

    [17] Wang S, Fan X Y, Liu Q W et al. Distributed fiber-optic vibration sensing based on phase extraction from time-gated digital OFDR[J]. Optics Express, 23, 33301-33309(2015).

    [18] Wang Z N, Zhang L, Wang S et al. Coherent Φ-OTDR based on I/Q demodulation and homodyne detection[J]. Optics Express, 24, 853-858(2016).

    [19] Liu Q W, Fan X Y, He Z Y. Time-gated digital optical frequency domain reflectometry with 1.6-m spatial resolution over entire 110-km range[J]. Optics Express, 23, 25988-25995(2015).

    [20] Wu Y, Wang Z N, Xiong J et al. Bipolar-coding Φ-OTDR with interference fading elimination and frequency drift compensation[J]. Journal of Lightwave Technology, 38, 6121-6128(2020).

    [21] Wu Y, Wang Z N, Xiong J et al. Interference fading elimination with single rectangular pulse in Φ-OTDR[J]. Journal of Lightwave Technology, 37, 3381-3387(2019).

    [22] He H J, Yan L S, Qian H et al. Suppression of the interference fading in phase-sensitive OTDR with phase-shift transform[J]. Journal of Lightwave Technology, 39, 295-302(2021).

    [23] He H J, Yan L S, Qian H et al. Enhanced range of the dynamic strain measurement in phase-sensitive OTDR with tunable sensitivity[J]. Optics Express, 28, 226-237(2019).

    [24] Li H, Sun Q Z, Liu T et al. Ultra-high sensitive quasi-distributed acoustic sensor based on coherent OTDR and cylindrical transducer[J]. Journal of Lightwave Technology, 38, 929-938(2020).

    [25] Murray M J, Redding B. Distributed multimode fiber Φ-OTDR sensor using a high-speed camera[J]. OSA Continuum, 4, 579-588(2021).

    [26] Cao C Q, Wang F, Pan Y et al. Suppression of signal fading with multi-wavelength laser in polarization OTDR[J]. IEEE Photonics Technology Letters, 29, 1824-1827(2017).

    [27] Zabihi M, Chen Y S, Zhou T et al. Continuous fading suppression method for Φ-OTDR systems using optimum tracking over multiple probe frequencies[J]. Journal of Lightwave Technology, 37, 3602-3610(2019).

    [28] Lin S T, Wang Z N, Xiong J et al. Rayleigh fading suppression in one-dimensional optical scatters[J]. IEEE Access, 7, 17125-17132(2019).

    [29] Redding B, Murray M J, Davis A et al. Quantitative amplitude measuring φ-OTDR using multiple uncorrelated Rayleigh backscattering realizations[J]. Optics Express, 27, 34952-34960(2019).

    [30] Zhao Z Y, Wu H, Hu J H et al. Interference fading suppression in φ-OTDR using space-division multiplexed probes[J]. Optics Express, 29, 15452-15462(2021).

    [31] Ren M Q, Lu P, Chen L et al. Theoretical and experimental analysis of Φ-OTDR based on polarization diversity detection[J]. IEEE Photonics Technology Letters, 28, 697-700(2016).

    [32] Yu Z J, Lu Y, Hu X Y et al. Polarization dependence of the noise of phase measurement based on phase-sensitive OTDR[J]. Journal of Optics, 19, 125602(2017).

    [33] Guerrier S, Dorize C, Awwad E et al. Introducing coherent MIMO sensing, a fading-resilient, polarization-independent approach to φ-OTDR[J]. Optics Express, 28, 21081-21094(2020).

    [34] Wang X F, Zhao C, Wu H et al. Fading-free polarization-sensitive optical fiber sensing[J]. Optics Express, 28, 37334-37342(2020).

    [35] Wang X F, Zhao C, Wu H et al. 45° aligned dual-polarizer for the suppression of signal fading in polarization OTDR[J]. Applied Optics, 60, 1603-1608(2021).

    [36] He X G, Zhang M, Xie S R et al. Self-referenced accelerometer array multiplexed on a single fiber using a dual-pulse heterodyne phase-sensitive OTDR[J]. Journal of Lightwave Technology, 36, 2973-2979(2018).

    [37] Martins H F, Martin-Lopez S, Corredera P et al. Distributed vibration sensing over 125 km with enhanced SNR using phi-OTDR over a URFL cavity[J]. Journal of Lightwave Technology, 33, 2628-2632(2015).

    [38] Qian H, Luo B, He H J et al. Phase demodulation based on DCM algorithm in Φ-OTDR with self-interference balance detection[J]. IEEE Photonics Technology Letters, 32, 473-476(2020).

    [39] Xu T W, Ma L L, Yang K H et al. A novel mini-DAS module for submarine application[J]. Proceedings of SPIE, 11554, 177-182(2020).

    [40] Shi S P, Yang W H, Zheng Y H et al. Noise analysis of single-frequency laser source in preparation of squeezed-state light field[J]. Chinese Journal of Lasers, 46, 0701009(2019).

    [41] Wang D F, Yao X, Jiao Z K et al. Time-delay interferometry for space-based gravitational wave detection[J]. Chinese Optics, 14, 275-288(2021).

    Ke Li, Yandong Gong, Zhuo Zhang. Research Progress of φ-OTDR Noise Reduction Processing[J]. Laser & Optoelectronics Progress, 2022, 59(23): 2300002
    Download Citation