激光写光电子学进展

φ -OTDR降噪处理的研究进展

李柯,龚岩栋*,张卓

北京信息科技大学仪器科学与光电工程学院,北京 100192

摘要相位敏感型光时域反射仪(φ-OTDR)具有分布式传感、响应速度快、结构简单、检测距离长以及抗电磁干扰等特点,但在实际应用过程中,由于使用的是相干长度较长的光源,脉冲光的后向瑞利散射在光脉冲内部会发生干涉,且φ-OTDR受相干衰落、偏振衰落以及共模噪声等因素的影响,信噪比会急剧下降。因此,从φ-OTDR的工作原理入手,总结分析了近年来降低φ-OTDR系统各类噪声的方法,并对φ-OTDR系统降噪的未来发展方向进行了展望。 关键词 光纤光学;传感;相位敏感型光时域反射仪;噪声;信噪比 中图分类号 TP212 文献标志码 A **DOI**: 10.3788/LOP202259.2300002

Research Progress of φ -OTDR Noise Reduction Processing

Li Ke, Gong Yandong^{*}, Zhang Zhuo

School of Instrument Science and Opto-Electronic Engineering, Beijing Information Science and Technology University, Beijing 100192, China

Abstract The phase-sensitive optical time domain reflectometer (φ -OTDR) is characterized by distributed sensing, fast response, simple structure, long detection distance, and anti-electromagnetic interference. However, due to the use of a light source with a long coherence length, the backward Rayleigh scattering of the pulsed light interferes inside the optical pulse, thereby affecting the φ -OTDR by factors, such as coherent fading, polarization fading, and common mode noise, which sharply reduce the signal-to-noise ratio. Therefore, this article discusses the working principle of φ -OTDR, summarizes and analyzes recent methods for reducing various types of noise in φ -OTDR system, and proposes future development directions for noise reduction in φ -OTDR systems.

Key words fiber optics; sensing; phase-sensitive optical time domain reflectometer; noise; signal-to-noise ratio

1 引 言

1993年, Taylor等^[1]提出的相位敏感型光时域反 射仪(φ-OTDR)因具有响应速度快、灵敏度高等优点 在众多分布式光纤传感技术中成为人们研究的重点。 φ-OTDR是利用后向瑞利散射信号(RBS)的干涉进行 传感,传感光纤的散射点受到扰动后会发生不规律变 化,导致扰动点的瑞利散射光出现波动^[2]。φ-OTDR 的光源采用窄线宽激光源,由于光的干涉结果取决于 光的敏感性,且极小的振动也会使干涉结果发生变化, 因此φ-OTDR可完成对微小振动、声波等的监测。

我国对 φ-OTDR 的研究起步较晚,目前与国外的 技术水平相比还有一定距离,但仍取得了不俗的进展。 在分辨率的提升方面:2018年,Shan等^[3]利用分布式 反馈干涉仪对系统进行扰动定位,最终在约2.16 km的 传感距离上实现了10 m的空间分辨率;2019年,Chen 等^[4]采用双向分布拉曼放大技术,最终在基于时空数字 光频域反射仪的系统中将传感距离扩展到108 km,且 空间分辨率也高达5 m。在频率响应(带宽)的提升方 面:2018年,Muanenda等^[5]对输入的光波脉冲添加频 率为 ω_0 的高频相位载波后利用相位载波解调算法,最 终在1.5 km的传感距离上实现了2 kHz的频率响应; 2020年,Trautz等^[6]发明了一种基于CO₂监测的 φ -OTDR,与传统的光纤声传感器(DAS)相比,该技术 的检测带宽提高了3倍;2021年,Jiang等^[7]利用新的连 续啁啾光对脉冲光信号进行调制,最终在1 km长的光 纤上实现了1.04 MHz的频率响应。在传感距离的提 升方面:2018年,Mei等^[8]采用外差检测和数字相干检

综 述

收稿日期: 2021-10-09; 修回日期: 2021-11-07; 录用日期: 2021-11-10

基金项目:北京信息科技大学重点研究培育项目(2121YJPY209)

通信作者: *eydgong@bistu.edu.cn

测结合的方式,成功将传感光纤长度扩展到了 50 km; 同年,Marra 等^[9]对海底地震进行分析后,成功将光纤 应用到海底地震的实时监测中,且传感距离达到数千 公里。

2 各类噪声的定义

φ-OTDR的工作系统原理如图1所示。其中: AOM为声光调制器;Data ACQ为数据采集卡。

图 1 φ -OTDR的传感系统 Fig. 1 Sensing system of the φ -OTDR

超窄线宽激光器发出连续光,经耦合器1分为上 下两路信号:一路光信号用AOM产生探测脉冲,探测 脉冲光经过放大后进入环形器并从环形器端口2进入 传感光纤以探测扰动信号;另一路光信号作为参考光 与RBS在耦合器2产生相干干涉,利用数据采集卡探 测接收信号。假设传感光纤的长度为L,将传感光纤 均分为N段,每段区间的长度ΔL=L/N,则经过AOM 探测到的RBS干涉强度可表示为

$$I = \sum_{i=1}^{M-1} \sum_{i=i+1}^{M} E_0^2 A \exp\left[-4\alpha(k-1)\Delta L\right] + 2E_0^2 A^2 \sum_{i=1}^{M} \sum_{i=i+1}^{M} \cos(\Omega), \qquad (1)$$

式中:I为干涉后的信号强度;i为光纤散射点的位置; E_0 为脉冲光的电场强度; α 为损耗系数;A为散射点的 幅值;k为光纤的编号; Ω 为 ΔL 内第i个光纤散射点的 相位,其在($-\pi,\pi$)上服从均匀随机分布。即使是微 弱的信号,等式右侧的第二项(相干检测的干涉强度) 也会比第一项大很多,而直接检测得到的信号干涉强 度只包含第一项,因此,相比直接探测,相干探测更适 用于微弱信号的检测。

当光纤上某点出现扰动事件时,扰动位置的光相 位会发生变化,同时脉冲内发生干涉的光强也会发生 变化。理想状态下光纤内的散射体分布均匀,若第k个散射体 τ_k 的幅值因子 $\alpha(\tau_k) = (\alpha_s S)^{\frac{1}{2}}, 则$ RBS 的光功 率^[10]可表示为

$$p(t) = \sum_{i=1}^{N} \alpha_{s} S \exp\left(-2\alpha \frac{c\tau_{i}}{n}\right) \operatorname{rect}\left(\frac{t-\tau_{i}}{\omega}\right) + 2\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \alpha_{s} S \exp\left[-\alpha \frac{c(\tau_{i}-\tau_{j})}{n}\right] \times \operatorname{rect}\left(\frac{t-\tau_{i}}{\omega}\right) \operatorname{rect}\left(\frac{t-\tau_{j}}{\omega}\right) \times \cos\left[\left(\omega_{s}+\omega_{b}+\alpha_{i}t\right)(\tau_{i}-\tau_{i})\right],$$
(2)

式中:α_s为损耗系数;S为瑞利散射的捕捉因子;c和n 分别为光速与光纤内的折射率;t为光源发出脉冲与探 测器接收到 RBS 的时间差;τ_i为第 i 个散射体的时间延迟;ω为相干波的脉冲宽度;i和 j 为散射点的点数;ω。 为注入脉冲的频率,ω_A为声光调制器引入的频率漂移;α_i为激光光源的频率漂移;rect()为矩形函数。 RBS 的光波函数^[10]可表示为

$$y'(t) = \sum_{k=1}^{M} E_{s}(t-\tau_{k})\alpha(\tau_{k})\exp\left(-\alpha\frac{c\tau_{k}}{n}\right)\operatorname{rect}\left(\frac{t-\tau_{k}}{\omega}\right) + \sum_{K-M+1}^{N} E_{s}(t-\tau_{k})\alpha(\tau_{k})\exp\left(-\alpha\frac{c\tau_{k}}{n}\right)\operatorname{rect}\left(\frac{t-\tau_{k}}{\omega}\right) \times \exp\left\{j\left[f\left(t-\frac{2nz_{k}}{c}+\frac{nz_{s}}{c}\right)+f\left(t-\frac{nz_{d}}{c}\right)\right]\right\}, \quad (3)$$

式中:*E*_s(*t*)为激光器光信号的波函数;*M*为扰动位置与 光纤起始位置之间散射体的数量;*K*和*N*为散射点的数 量;*z*_k为第*k*个散射点与光纤入射端之间的距离;*z*_s和*z*_d 为发生扰动的位置;*f*(*t*)为扰动引入的相位变化函数。 式(2)和式(3)等号右侧第一项表示扰动位置前的RBS 光波函数,第二项表示扰动位置后的RBS光波函数。

在 φ-OTDR中,系统的衰落噪声主要由相干衰落 噪声、偏振衰落噪声、共模噪声、光源噪声等组成。相 干衰落由 φ-OTDR自身缺陷所致,通常选用相干性较 好且光纤内散射点和散射率都是随机分布的光源,在 光纤的任意位置 RBS都会产生相长或相消的干涉现 象^[11]。在幅度解调中,相干衰落会使信噪比(SNR)降 低,在相位解调中,相干衰落对应的点会使其前后区域 的相位解调发生不连续突变,极易出现多处衰落点,如 图 2 所示。激光源的线宽越窄,相干性越好,发生相干 衰落的可能性就越大。通过增加光源的线宽等方法可 以初步削弱相干衰落,但这会使 RBS信号定位与扰动 检测能力下降,且无法完全消除相干衰落。

干涉仪中的偏振光在传输时偏振态会发生随机 变化,从而对检测信号的幅度造成影响。若两束偏振 光的偏振态恰好正交,则光的干涉光强会完全消失, 即偏振衰落^[12-13],如图3所示。光纤中的RBS光在传 输过程偏振态会发生变化,导致偏振衰落,通过改变

第 59卷 第 23 期/2022 年 12 月/激光与光电子学进展

Fig. 2 Generation mechanism of the coherent noise^[11]

偏振接收就能解决该问题。共模噪声与光源噪声均 属于物理噪声,且二者在 φ -OTDR中也不是影响信 噪比的主要因素:φ-OTDR中由于光源频漂或光纤沿 线环境变化导致传输模式发生变化的现象也被称为 共模噪声^[14];φ-OTDR中由于光源发出的连续光波频

图 3 偏振噪声的产生机制^[12-14]

Fig. 3 Generation mechanism of the polarization noise^[12-14]

率带宽不符合要求或自身消光比不足引起的衰落噪 声也被称为光源噪声。各种噪声的定义分类如表1 所示。

表1 各类主要噪声的分类定义

Table 1 Classification	and	definition	of	various	main	noises
------------------------	-----	------------	----	---------	------	--------

Classification	Cause of noise	Whether it is the main component of system noise
Coherent noise	RBS caused by phase length or cancellation of pulse light detected at different positions of optical fiber	yes
Polarization noise	when the polarization state of the pulse light is orthogonal, the interference light intensity disappears completely	yes
Common mode noise	caused by frequency drift of laser source or environmental change along the optical fiber	no
Light source noise	caused by unsatisfactory bandwidth of light source or insufficient extinction ratio	no

相干衰落的抑制 3

当扰动作用到传感光纤上时,RBS的干涉信号会 从该振动点处发生变化,从而使功率图上振动点对应 的位置发生明显变化^[14]。尽管φ-OTDR在传感方面 具有广阔的应用前景,但将其发展为一种稳定的传感 产品仍然需要克服一些技术难点[3],其中最主要的就 是相干衰落的抑制^[15-16]。相干衰落作为影响φ-OTDR 信噪比的主要因素,一直都是 φ -OTDR研究领域的热 点课题[17]。

3.1 基于相干探测的衰落识别技术

2016年, Pang等^[15]提出一种基于φ-OTDR相干外

差检测的虚警峰值判别方法。从传感光纤反向散射的 信号相位发现,信号衰落只存在对应衰落点的位置,可 利用误报点前后的相位差排除干涉衰落导致的相位报 警点。该系统的实验装置如图4所示。其中:OC表示 耦合器:AFG表示任意的函数发生器:EDFA表示掺 饵光纤放大器;PZT表示陶瓷电容;BPD表示光电平 衡探测器;DAQ表示数据采集系统;PC表示电脑实验 机。该系统利用差分相位 $\Delta \Phi$ 定位外部振动,约存在 89个采样点。在PZT(z=2.04 km)处施加振动后出 现很多不同的相位峰,可检测多个外部振动事件。在 2.03~2.05 km的振动区域,计算出振动位置200条连 续轨迹的幅值标准差和差分相位标准差后,通过对比

图 4 基于相干探测的实验系统^[15] Fig. 4 Experimental system based on coherent detection^[15]

综 述

第 59 卷 第 23 期/2022 年 12 月/激光与光电子学进展

差分相位峰两侧的相位差可以识别振动峰是否为虚警峰,最终得到的信噪比为16dB,相比利用振幅提取法的信噪比提升了11dB,空间分辨率为2.5m^[15]。

3.2 TGD-OFDR系统抑制相干衰落

2017年, Wang 等^[18-19]提出了TGD(Time-gated digital)-OFDR系统,其原理如图5所示。其中:AWG 表示信号发生器;AMP表示放大器;ADC表示模数转

换器。传感光纤的长度被延伸到 35 km,2个 PZT 分别 被放置于距离光纤起始位置 9.93 km 和 34.6 km 处, 振动频率均为 800 Hz,将注入的探测脉冲频率降为 2.5 kHz,振动响应带宽降为 1.25 kHz,以降低系统的 复杂性和成本,同时精确定位了在 35 km 左右两个不 同位置点发生的扰动,有效降低了系统的相干衰落噪 声,使系统的信噪比高达 26 dB^[19]。

图 5 TGD-OFDR系统的原理图^[18] Fig. 5 Schematic diagram of the TGD-OFDMR system^[18]

3.3 基于双极性编码的 φ -OTDR

2020年,Wu等^[20]首次提出了基于外差检测双极 性编码的φ-OTDR,其原理如图6所示。其中,VOA 表示可变光放大器。光源发出的光一部分用于本振, 另一部分被调制为探测脉冲,IQ调制器由AWG驱动 产生2048位的双极性编码。此外,采用EDFA放大 脉冲功率并在10 km光纤的末端添加12.3 m长的 PZT 扰动能很好地抑制瞬态效应^[21]。该团队采用一种实时补偿方法对光源频漂进行补偿,并结合频谱提取和混合方法消除相干衰落。与普通单极性编码相比,双极性码的信噪比提升了7.1 dB,且测量时间减半,在10 km的传感范围内具有0.92 m的空间分辨率,用较小的分辨率代价实现了系统的无相干衰落^[20]。

图 6 双极性编码的实验装置^[20] Fig. 6 Experimental setup for bipolar coding ^[20]

3.4 利用多探头抑制相干衰落

2021年,He等^[22]提出相移变换的方法以抑制相干 衰落,通过对检测信号进行适当分解,在一个信号中引 入π相移,得到一个具有幅值互补的信号^[23-24],然后通 过合成互补信号对假相位进行校正。实验结果表明, 该方法可将60dB以上的强度波动减小到15dB,将差 分相位的标准差减小到0.0224。该方法对所有畸变 相位进行校正时的可靠性较高,且能很好地抑制系统 的相干衰落^[22]。Murray等^[25]将多模光纤与高速相机 相结合,利用高速相机与时间门控相结合的方法,构建 一个能利用整个背向散射斑的多模光纤传感器。沿2 km长的多模光纤自上而下扫描一个20m长的传感区 域,利用高速相机采集 RBS,通过离轴全息术从各反 射区域恢复散斑场的振幅和相位降低相干衰落。结果 表明,该传感器的测量带宽为 400 Hz,空间分辨率为 20 m,在2 km的传感距离内能将信噪比提高 25 dB。

3.5 基于空分复用的 φ-OTDR 干涉衰落抑制技术

近些年,基于空分复用(SDM)的干涉衰落抑制技术发展迅猛。2017年,Cao等^[26]提出一种抑制偏振敏感型光时域反射(POTDR)信号衰减的新型系统,在3km长的光纤上以5m的空间分辨率探测10.8Hz的振动事件中,避免了POTDR由于信号衰落引起的定位误差,相比传统系统,信噪比提高了1dB。2019年:Zabihi等^[27]提出基于多频率探测的*q*-OTDR,得到超

综 述

第 59 卷 第 23 期/2022 年 12 月/激光与光电子学进展

过 98.85% 的无失真输出信号;Lin 等^[28]利用统计分析 方法从数学上解释低强度点出现衰落的原因,为消除 一维光散射中的衰减提供了指导;Redding 等^[29]提出 一种能够定量检测振幅的 *φ*-OTDR并测量了一系列 应变信号,结果表明,该传感器的应变可分为锯齿应变 和正弦应变,且传感带宽只受光纤长度的限制,不受信 号衰落的影响。

2021年, Zhao 等^[30]提出了一种基于少模光纤 (FMF)空分复用的φ-OTDR干涉衰落抑制技术,实验装置如图7所示。其中:LD表示超窄线宽激光源; BPF表示带通滤波器; PMF表示保偏光纤。通过聚 合来自不同空间模式的多个空分复用探头解决衰落 问题,采用旋转矢量和方法对不同空间模式的 RBS 进行矢量合成。将任意两个模式的光信号进行矢量 合成,观察到合成信号的最低光强分别比噪声基底高 2.5 dB 和 1.9 dB,由干扰衰落引起的解调相位出现错 误的概率也显著减少。因此,同时用三个模式的探测 光进行测量,再将得到的三个模式光信号进行矢量合 成,使合成信号的最低光强比噪声基底高 5 dB 以上, 且完全消除了干涉衰落引起的相位错误^[30]。近年来, 人们对相干衰落抑制的代表性研究成果如表 2 所示。

图 7 基于少模光纤空分复用的φ-OTDR传感系统^[30] Fig. 7 φ-OTDR sensing system based on few-mode fiber space division multiplexing^[30]

	表 2	典型的相干衰落抑制技术	
--	-----	-------------	--

r	n 1	1 6		n · 1	1 1	C 1'		. 1 '
	Ink	10 .	/ /	1110100	looboront	toding	011002000100	toobbiguiog
					I COMPLETE	LAUTIO	SHUDDESSION	TECHNICHIES.
	r un	10 4		, picui	concrent.	incuring	ouppression	countingaco

Ref.	Suppress result	Advantage	Disadvantage	Room of improvement
	compared with the amplitude	it is easy to obtain the spatial	only the false alarm is	strengthen the screening
[15]	outroation mothod SND is	information of vibration points	eliminated, and high fidelity	of discriminant points to
[10]	increased by 11 dP	by using the virtual peak	signal reconstruction is not	achieve correct virtual
	increased by 11 dB	discrimination method	fundamentally realized	peak reconstruction
[19] SNF spatia	SNR is up to 26 dB, and the	system has low complexity and	the accuracy of time control	can be combined with
	spatial resolution is close to 5 m	low cost	gate circuit is not ideal	high-speed camera
	SNR increased by 7-1 dB	frequency drift compensation	spatial resolution of the system	introduction of less mode
[20]	measurement time halved	hy spectrum extraction	is not ideal	fiber for light wave
	measurement time narved	by spectrum extraction	is not ideal	transmission
[20] :nt	phase error equeed by	system structure is simple by	transmission distance is low,	consider combining
	interforence feding is completely	combining space division	and the uneven scattering	multimode fiber with
[30]	aliminated	multiplexing and few mode	points of the optical fiber are	frequency division
	eliminated	fiber	not considered	multiplexing technology

4 偏振衰落的抑制

2016年:Ren 等^[31]分析了 φ -OTDR系统偏振衰落的理论模型,采用偏振分集方式抑制偏振衰落噪声,提出的传感系统可以在高信噪比信号下获得更可靠的振动测量,相比传统 φ -OTDR的信噪比提升了10dB; Zhang 等^[12]通过解释 φ -OTDR中的偏振相关性提出了 一种基于正交脉冲的偏振衰落噪声抑制方法,最大能抑制的噪声可达到11.2 dB,平均能抑制的噪声可以达到4.9 dB。2017年,Yu等^[13,32]通过研究相位提取型 *q*-OTDR的偏振特性提出了一种基于正交偏振切换的*q*-OTDR系统,实验装置如图8所示。其中:PM结构表示保偏结构;PGC表示相位载波;MZ干涉仪表示马赫-曾德尔干涉仪。对不同极化状态的探测脉冲进

图 8 基于正交偏振切换的 φ-OTDR 系统^[32] Fig. 8 φ-OTDR system based on orthogonal polarization switching^[32]

行扫描时,瑞利散射波形表现出了稳定的模式,同时利 用瑞利干涉信号强度的偏振依赖性,通过调节探头光 的极化状态消除瑞利干涉信号的噪声强度^[11]。实验结 果表明,相比未经正交偏振切换的MZ干涉仪,正交切 换后系统的信噪比提升了15 dB。

2020年,Guerrier等^[33]发现没有采用偏振分集的 传感结构对偏振衰落非常敏感,并提出了一种相干多 输入多输出(MIMO)传感器。该传感器从SMF中的 RBS数值模型出发,在发射端采用双偏振复用,在接 收端通过偏振分集相干混频器捕获后向散射信息。对 包括相干MIMO在内的几种传感器进行对比实验,结 果表明,双偏振探测的传感器对偏振效应不敏感,可降低偏振衰落对系统的影响。同年,Wang等^[34]提出了一种前向传输偏振敏感光纤的传感方案,该方案在输入和检测端均采用45°对齐拼接成的保偏光纤。先给出了SMF中三种信号的衰落情况,然后设定系统最敏感时的参数,即极化状态(SOP)旋转的圆最大且去偏振镜片保持平行,同时SOP的移动方向与偏光镜平行,检测到的信噪比为22.6 dB,在系统最敏感的区域能有效消除信号衰落效应^[35]。

近年来,人们对系统偏振衰落抑制的代表性研究 如表3所示。

表3 典型的偏振衰落抑制技术

	Table 3	Typical	polarization	fading	suppression	techniques
--	---------	---------	--------------	--------	-------------	------------

Ref.	Suppress result	Advantage	Disadvantage	Room of improvement
[32]	SNR increased by 15 dB	polarization dependence of signal intensity using Rayleigh interference	structure of the experimental system is complex, and the demodulation signal processing formula is complex	introducing polarization multiplexing technology based on orthogonal polarization switching
[34]	polarization fading can be effectively eliminated in sensitive areas	combining PMF with SOP for noise reduction	interference caused by SOP small circle rotation is not completely eliminated	reduce the angle and number of SOP rotations
[35]	insensitive to polarization effect	sensor with dual polarization multiplexing	polarization diversity sensing structure is not considered	introducing time division multiplexing technology into the structure with polarization diversity

5 共模噪声的抑制

2018年,He 等^[36]提出基于双外差脉冲的φ-OTDR,首次建立了基于RBS的新型加速计灵敏度模型,简化了光纤加速计的结构,在一根光纤上,利用3 个相隔20m的多路复用加速计进行隔振^[37]。在适当条件下可以作为自参考以抑制系统的共模噪声,该传感器可将100Hz频率以下的共模噪声减小到35dB。 2020年,Qian等^[38]提出自干涉平衡检测的相位解调算法,通过微分交叉相乘(DCM)获取扰动波形,再通过 二阶运算补偿相位的幅值波动,从而准确提取相位,同 时避免了共模噪声和双脉冲之间的差异对解调的负面 影响。Xu等^[39]研发了一种微型DAS(Mini-DAS)模 块,可在海底利用几公里长的单模光纤传输数万个通 道信息,与普通DAS相比,该Mini-DAS具有较强的信 号采集能力,平均系统噪声仅为4.79×10⁻⁴ rad/ \sqrt{Hz} , 功耗为25W,对共模噪声的抑制效果较好。近年来, 人们对 φ -OTDR 共模噪声抑制的代表性研究如表4 所示。

表4	典型	的共	模噪	声抑	制	技7	k
				/ *!	114.4	*** 1	۰.

CC 11 4	m · 1		1	•	•	
ilioblo /	1770100	0.0100.000	mode	100100	011000000000	toobbiouiog
I able 4	I VDICAL	(()))))))))))))))))))))))))))))))))))))	THOME	HOISE	SHDDRESSION	recondes
1 0010 1	- , prour	0011111011	mode	110100	capprobuton	coorningaco

		51	11 1	
Ref.	Suppress result	Advantage	Disadvantage	Room of improvement
[38]	avoid the effect of too many pulses on common mode noise	applying the DCM to common mode rejection	poor spatial resolution and can not be applied to long-distance sensing	can combine radiosonde technology with frequency division multiplexing
[39]	strong signal acquisition capability and low noise	signal transmission using Mini-DAS module	influence of seabed pressure on the pressure along the optical fiber is not considered	for seabed inspection, the entire optical fiber shall be coated with compressive materials

6 激光光源噪声

光源噪声的种类较多,包括激光相位噪声、激光频率漂移产生的噪声以及光脉冲有限的消光比引起的噪声。对于激光相位噪声^[14]:因激光的相位噪声由线宽决定,线宽会影响系统的振动传感性能,为了减小相位的波动,激光器的相干长度应大于脉冲宽度。对于激光频率漂移引起的噪声^[36]:由于激光频率不同导致干涉图样发生变化,且激光的频漂会引起*φ*-OTDR波形轨迹的波动,为了在*φ*-OTDR中获得稳定的轨迹,系统需要使用频率稳定的激光器。对于光脉冲有限的消光

比引起的噪声^[6]:在测量过程中,电光调制器(EOM)偏 压漂移造成的迹线波动会引起光脉冲消光比失真,可 通过引入一个连续波的后向散射光降低系统的信噪 比。2019年,史少平等^[40]采用分析腔转换和零拍检测 法对单频激光器和光源激光器的噪声进行对比。结果 表明,半导体放大器(SOA)降噪系统能有效抑制低频 激光器的相位噪声。2021年,王登峰^[41]利用时延干涉 法(TDI)对三星上的12组信号进行测量,并搭建了一 组臂长相同的干涉仪消除光源噪声和光学平台的位移 噪声,很好地抑制了系统的光源噪声。表5为各类噪声 之间的相互关系及其发展方向。

表5 各类噪声的对比

Table 5 Comparison of various types of noise

Туре	Whether it is the main component of noise?	Advantage	Disadvantage	Future direction
Coherent noise	yes	space division multiplexing technology based on few mode fiber	coherence of various high-order modes or same order modes of space division multiplexing is too high	combination of multi-core fiber and time division multiplexing technology
Polarization noise	yes	technology of transforming single mode fiber into polarization maintaining fiber	disturbance caused by different polarization states cannot be eliminated	transformation of polarization maintaining fiber using polarization multiplexing technology
Common mode noise	no	Mini-DAS module technology	limited light wave signal transmission	introducing frequency division multiplexing technology
Light source noise	no	time delay interferometry	amplified light source signal frequency is difficult to meet the requirements	combining high-speed camera with ultra-low frequency drift light source

7 结 论

由于 φ -OTDR的特殊构造,其产生的各种噪声 (以相干衰落噪声、偏振衰落噪声为主)会使光纤内某 些区域返回的RBS信号强度极低,对这些位置进行解 调的难度较大,给 φ -OTDR在工程中的应用带来很大 不便,成为制约 φ -OTDR系统可靠性、稳定性的关键 问题之一,阻碍了 φ -OTDR传感器在工程领域的大范 围推广使用。因此,解决 φ -OTDR信号的相干噪声具 有重要意义。

对 φ -OTDR系统产生的各类噪声来源和抑制分析发现,随着 φ -OTDR技术的日益发展,我国对 φ -

OTDR的研究总体发展势头较好,但在其噪声处理方 面仍与国外顶尖技术存在较大差距。之后,对 *φ*-OTDR 降噪研究的方向包括:1)传感光纤的信息传输 量随着光纤数量的增加呈指数提升,可结合多模光纤 和空分复用技术进行降噪;2)作为目前石油天然气监 测的主要应用系统,传感光纤的长度仅仅只有几公里 是远远不够的,因此要提高传感光纤的长度使其更实 用化;3)对多种空间模式探头的优化,特别是光子灯笼 下输出的高阶模因其高相关性导致矢量合成后的信号 无法达到预期降噪效果的优化;4)应尽量选择同型号 且散射点分布较为均匀的传感光纤,从而在计算抑制 效率、达到传输目的等方面有着事半功倍的效果;5)除

综 述

空分复用技术外,还应将多芯光纤与频分复用、时分复 用、偏振复用等技术相结合,提出一种能抑制系统各种 衰落噪声、将传感光纤距离增加到大工业生产所需的 距离以及在数据分析和光波解调方面结构简单的 *q*-OTDR系统。

参考文献

- [1] Taylor H F, Lee C E. Apparatus and method for fiber optic intrusion sensing: US05194847A[P]. 1993-03-16.
- [2] Healey P. Fading rates in coherent OTDR[J]. Electronics Letters, 1984, 20(11): 443-444.
- [3] Shan Y Y, Dong J Y, Zeng J, et al. A broadband distributed vibration sensing system assisted by a distributed feedback interferometer[J]. IEEE Photonics Journal, 2018, 10(1): 6800910.
- [4] Chen D, Liu Q W, He Z Y. 108-km distributed acoustic sensor with 220-pe√Hz strain resolution and 5-m spatial resolution[J]. Journal of Lightwave Technology, 2019, 37(18): 4462-4468.
- [5] Muanenda Y, Faralli S, Oton C J, et al. Dynamic phase extraction in a modulated double-pulse φ-OTDR sensor using a stable homodyne demodulation in direct detection [J]. Optics Express, 2018, 26(2): 687-701.
- [6] Trautz R, Daley T, Miller D, et al. Geophysical monitoring using active seismic techniques at the Citronelle Alabama CO₂ storage demonstration site[J]. International Journal of Greenhouse Gas Control, 2020, 99: 103084.
- [7] Jiang J L, Wang Z N, Wang Z T, et al. Continuous chirped-wave phase-sensitive optical time domain reflectometry[J]. Optics Letters, 2021, 46(3): 685-688
- [8] Mei X W, Pang F F, Liu H H, et al. Fast coarse-fine locating method for φ-OTDR[J]. Optics Express, 2018, 26(3): 2659-2667.
- [9] Marra G, Clivati C, Luckett R, et al. Ultrastable laser interferometry for earthquake detection with terrestrial and submarine cables[J]. Science, 2018, 361(6401): 486-490.
- [10] 张颜.Φ-OTDR分布式光纤扰动传感系统模式识别研究[D].北京:北京交通大学,2016.
 Zhang Y. Study of pattern disturbance recognition for Φ-OTDR fiber-optic distributed sensor system[D]. Beijing: Beijing Jiaotong University, 2016.
- [11] Gong Y D, Li K, Zhang Z. Investigation on low cost optical fiber sensor interrogator[J]. Instruments and Experimental Techniques, 2021, 64(5): 765-767.
- [12] Zhang Y X, Xu Y M, Shan Y Y, et al. Polarization dependence of phase-sensitive optical time-domain reflectometry and its suppression method based on orthogonal-state of polarization pulse pair[J]. Optical Engineering, 2016, 55(7): 074109.
- [13] 余志杰.基于Φ-OTDR的分布式振动传感技术偏振特 性研究[D].长沙:国防科技大学,2017.
 Yu Z J. Research on polarization dependence of distributed vibration sensing based on Φ-OTDR[D]. Changsha: National University of Defense Technology, 2017.

- [14] Bao X Y, Wang Y. Recent advancements in Rayleigh scattering-based distributed fiber sensors[J]. Advanced Devices & Instrumentation, 2021, 2021: 1-17.
- [15] Pang F F, He M T, Liu H H, et al. A fadingdiscrimination method for distributed vibration sensor using coherent detection of Φ -OTDR[J]. IEEE Photonics Technology Letters, 2016, 28(23): 2752-2755.
- [16] Zhou J, Pan Z Q, Ye Q, et al. Characteristics and explanations of interference fading of a Φ-OTDR with a multi-frequency source[J]. Journal of Lightwave Technology, 2013, 31(17): 2947-2954.
- [17] Wang S, Fan X Y, Liu Q W, et al. Distributed fiberoptic vibration sensing based on phase extraction from time-gated digital OFDR[J]. Optics Express, 2015, 23 (26): 33301-33309.
- [18] Wang Z N, Zhang L, Wang S, et al. Coherent Φ-OTDR based on I/Q demodulation and homodyne detection[J]. Optics Express, 2016, 24(2): 853-858.
- [19] Liu Q W, Fan X Y, He Z Y. Time-gated digital optical frequency domain reflectometry with 1.6-m spatial resolution over entire 110-km range[J]. Optics Express, 2015, 23(20): 25988-25995.
- [20] Wu Y, Wang Z N, Xiong J, et al. Bipolar-coding Φ-OTDR with interference fading elimination and frequency drift compensation[J]. Journal of Lightwave Technology, 2020, 38(21): 6121-6128.
- [21] Wu Y, Wang Z N, Xiong J, et al. Interference fading elimination with single rectangular pulse in Φ-OTDR[J]. Journal of Lightwave Technology, 2019, 37(13): 3381-3387.
- [22] He H J, Yan L S, Qian H, et al. Suppression of the interference fading in phase-sensitive OTDR with phaseshift transform[J]. Journal of Lightwave Technology, 2021, 39(1): 295-302.
- [23] He H J, Yan L S, Qian H, et al. Enhanced range of the dynamic strain measurement in phase-sensitive OTDR with tunable sensitivity[J]. Optics Express, 2019, 28(1): 226-237.
- [24] Li H, Sun Q Z, Liu T, et al. Ultra-high sensitive quasidistributed acoustic sensor based on coherent OTDR and cylindrical transducer[J]. Journal of Lightwave Technology, 2020, 38(4): 929-938.
- [25] Murray M J, Redding B. Distributed multimode fiber Φ -OTDR sensor using a high-speed camera[J]. OSA Continuum, 2021, 4(2): 579-588.
- [26] Cao C Q, Wang F, Pan Y, et al. Suppression of signal fading with multi-wavelength laser in polarization OTDR
 [J]. IEEE Photonics Technology Letters, 2017, 29(21): 1824-1827.
- [27] Zabihi M, Chen Y S, Zhou T, et al. Continuous fading suppression method for Φ-OTDR systems using optimum tracking over multiple probe frequencies[J]. Journal of Lightwave Technology, 2019, 37(14): 3602-3610.
- [28] Lin S T, Wang Z N, Xiong J, et al. Rayleigh fading suppression in one-dimensional optical scatters[J]. IEEE Access, 2019, 7: 17125-17132.
- [29] Redding B, Murray M J, Davis A, et al. Quantitative amplitude measuring φ -OTDR using multiple uncorrelated

第 59 卷 第 23 期/2022 年 12 月/激光与光电子学进展

综 述

Rayleigh backscattering realizations[J]. Optics Express, 2019, 27(24): 34952-34960.

- [30] Zhao Z Y, Wu H, Hu J H, et al. Interference fading suppression in φ -OTDR using space-division multiplexed probes[J]. Optics Express, 2021, 29(10): 15452-15462.
- [31] Ren M Q, Lu P, Chen L, et al. Theoretical and experimental analysis of Φ -OTDR based on polarization diversity detection[J]. IEEE Photonics Technology Letters, 2016, 28(6): 697-700.
- [32] Yu Z J, Lu Y, Hu X Y, et al. Polarization dependence of the noise of phase measurement based on phase-sensitive OTDR[J]. Journal of Optics, 2017, 19(12): 125602.
- [33] Guerrier S, Dorize C, Awwad E, et al. Introducing coherent MIMO sensing, a fading-resilient, polarizationindependent approach to φ-OTDR[J]. Optics Express, 2020, 28(14): 21081-21094.
- [34] Wang X F, Zhao C, Wu H, et al. Fading-free polarization-sensitive optical fiber sensing[J]. Optics Express, 2020, 28(25): 37334-37342.
- [35] Wang X F, Zhao C, Wu H, et al. 45° aligned dualpolarizer for the suppression of signal fading in polarization OTDR[J]. Applied Optics, 2021, 60(6): 1603-1608.
- [36] He X G, Zhang M, Xie S R, et al. Self-referenced accelerometer array multiplexed on a single fiber using a

dual-pulse heterodyne phase-sensitive OTDR[J]. Journal of Lightwave Technology, 2018, 36(14): 2973-2979.

- [37] Martins H F, Martin-Lopez S, Corredera P, et al. Distributed vibration sensing over 125 km with enhanced SNR using phi-OTDR over a URFL cavity[J]. Journal of Lightwave Technology, 2015, 33(12): 2628-2632.
- [38] Qian H, Luo B, He H J, et al. Phase demodulation based on DCM algorithm in Φ-OTDR with selfinterference balance detection[J]. IEEE Photonics Technology Letters, 2020, 32(8): 473-476.
- [39] Xu T W, Ma L L, Yang K H, et al. A novel mini-DAS module for submarine application[J]. Proceedings of SPIE, 2020, 11554: 177-182.
- [40] 史少平,杨文海,郑耀辉,等. 压缩态光场制备中的单频激光源噪声分析[J]. 中国激光, 2019, 46(7): 0701009.
 Shi S P, Yang W H, Zheng Y H, et al. Noise analysis of single-frequency laser source in preparation of squeezed-state light field[J]. Chinese Journal of Lasers, 2019, 46 (7): 0701009.
- [41] 王登峰,姚鑫,焦仲科,等.面向天基引力波探测的时间延迟干涉技术[J].中国光学,2021,14(2):275-288.
 Wang D F, Yao X, Jiao Z K, et al. Time-delay interferometry for space-based gravitational wave detection [J]. Chinese Optics, 2021, 14(2):275-288.