• Photonics Research
  • Vol. 9, Issue 5, 714 (2021)
Jin Hong1、†, Huimin Wen2、†, Jiajing He2, Jingquan Liu2, Yaping Dan2、5、*, Jens W. Tomm3, Fangyu Yue1、6、*, Junhao Chu1、4, and Chungang Duan1、7、*
Author Affiliations
  • 1Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai 200241, China
  • 2National Key Laboratory of Science and Technology on Micro/Nano Fabrication Laboratory, Department of Micro/Nano Electronics, University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
  • 3Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany
  • 4National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
  • 5e-mail: yaping.dan@sjtu.edu.cn
  • 6e-mail: fyyue@ee.ecnu.edu.cn
  • 7e-mail: cgduan@clpm.ecnu.edu.cn
  • show less
    DOI: 10.1364/PRJ.417090 Cite this Article Set citation alerts
    Jin Hong, Huimin Wen, Jiajing He, Jingquan Liu, Yaping Dan, Jens W. Tomm, Fangyu Yue, Junhao Chu, Chungang Duan. Stimulated emission at 1.54 μm from erbium/oxygen-doped silicon-based light-emitting diodes[J]. Photonics Research, 2021, 9(5): 714 Copy Citation Text show less
    References

    [1] X. Chen, M. M. Milosevic, S. Stanković, S. Reynolds, T. D. Bucio, K. Li, D. J. Thomson, F. Gardes, G. T. Reed. The emergence of silicon photonics as a flexible technology platform. Proc. IEEE, 106, 2101-2116(2018).

    [2] D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli. Roadmap on silicon photonics. J. Opt., 18, 073003(2016).

    [3] Z. Zhou, B. Yin, J. Michel. On-chip light sources for silicon photonics. Light Sci. Appl., 4, e358(2015).

    [4] H. Subbaraman, X. Xu, A. Hosseini, X. Zhang, Y. Zhang, D. Kwong, R. T. Chen. Recent advances in silicon-based passive and active optical interconnects. Opt. Express, 23, 2487-2511(2015).

    [5] D. Liang, J. E. Bowers. Recent progress in lasers on silicon. Nat. Photonics, 4, 511-517(2010).

    [6] D. A. Miller. Device requirements for optical interconnects to silicon chips. Proc. IEEE, 97, 1166-1185(2009).

    [7] E. M. Fadaly, A. Dijkstra, J. R. Suckert, D. Ziss, M. A. van Tilburg, C. Mao, Y. Ren, V. T. van Lange, K. Korzun, S. Kölling. Direct-bandgap emission from hexagonal Ge and SiGe alloys. Nature, 580, 205-209(2020).

    [8] C. Roques-Carmes, S. E. Kooi, Y. Yang, A. Massuda, P. D. Keathley, A. Zaidi, Y. Yang, J. D. Joannopoulos, K. K. Berggren, I. Kaminer. Towards integrated tunable all-silicon free-electron light sources. Nat. Commun., 10, 3176(2019).

    [9] S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nat. Photonics, 10, 307-311(2016).

    [10] Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, S. Noda. A micrometre-scale Raman silicon laser with a microwatt threshold. Nature, 498, 470-474(2013).

    [11] H. Wen, J. He, J. Hong, S. Jin, Z. Xu, H. Zhu, J. Liu, G. Sha, F. Yue, Y. Dan. Efficient Er/O-doped silicon light-emitting diodes at communication wavelength by deep cooling. Adv. Opt. Mater., 8, 2000720(2020).

    [12] M. A. Hughes, H. Li, N. Theodoropoulou, J. D. Carey. Optically modulated magnetic resonance of erbium implanted silicon. Sci. Rep., 9, 1(2019).

    [13] M. Celebrano, L. Ghirardini, M. Finazzi, G. Ferrari, Y. Chiba, A. Abdelghafar, M. Yano, T. Shinada, T. Tanii, E. Prati. Room temperature resonant photocurrent in an erbium low-doped silicon transistor at telecom wavelength. Nanomaterials, 9, 416(2019).

    [14] M. Lourenço, M. Milošević, A. Gorin, R. Gwilliam, K. Homewood. Super-enhancement of 1.54  μm emission from erbium co-doped with oxygen in silicon-on-insulator. Sci. Rep., 6, 1(2016).

    [15] A. Kenyon. Erbium in silicon. Semicond. Sci. Tech., 20, R65-R84(2005).

    [16] N. Q. Vinh, N. N. Ha, T. Gregorkiewicz. Photonic properties of Er-doped crystalline silicon. Proc. IEEE, 97, 1269-1283(2009).

    [17] G. Franzò, F. Priolo, S. Coffa. Understanding and control of the erbium non-radiative de-excitation processes in silicon. J. Lumin., 80, 19-28(1998).

    [18] H. Shen, D.-S. Li, D.-R. Yang. Research progress of silicon light source. Acta Phys. Sin., 64, 204208(2015).

    [19] S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature, 520, 69-72(2015).

    [20] J. Hong, H. Wang, F. Yue, J. W. Tomm, D. Kruschke, C. Jing, S. Chen, Y. Chen, W. Hu, J. Chu. Emission kinetics from PbSe quantum dots in glass matrix at high excitation levels. Phys. Status Solidi R, 12, 1870312(2018).

    [21] J. Ramírez, F. F. Lupi, Y. Berencén, A. Anopchenko, J. Colonna, O. Jambois, J. Fedeli, L. Pavesi, N. Prtljaga, P. Rivallin. Er-doped light emitting slot waveguides monolithically integrated in a silicon photonic chip. Nanotechnology, 24, 115202(2013).

    [22] T. Kobayashi, M. Djiango, W. J. Blau. Near-infrared electroluminescence and stimulated emission from semiconducting nonconjugated polymer thin films. J. Appl. Phys., 107, 023103(2010).

    [23] V. Ho, Y. Wang, B. Ryan, L. Patrick, H. Jiang, J. Lin, N. Vinh. Observation of optical gain in Er-doped GaN epilayers. J. Lumin., 221, 117090(2020).

    [24] N. T. Otterstrom, R. O. Behunin, E. A. Kittlaus, Z. Wang, P. T. Rakich. A silicon Brillouin laser. Science, 360, 1113-1116(2018).

    [25] H. Liu, Z. Li, W. Song, Y. Yu, F. Pang, T. Wang. MoS2/graphene heterostructure incorporated passively mode-locked fiber laser: from anomalous to normal average dispersion. Opt. Mater. Express, 10, 46-56(2020).

    [26] S. Saito, T. Takahama, K. Tani, M. Takahashi, T. Mine, Y. Suwa, D. Hisamoto. Stimulated emission of near-infrared radiation in silicon fin light-emitting diode. Appl. Phys. Lett., 98, 261104(2011).

    [27] V. Robbiano, G. M. Paternó, A. A. La Mattina, S. G. Motti, G. Lanzani, F. Scotognella, G. Barillaro. Room-temperature low-threshold lasing from monolithically integrated nanostructured porous silicon hybrid microcavities. ACS Nano, 12, 4536-4544(2018).

    [28] K. Luterová, D. Navarro, M. Cazzanelli, T. Ostatnický, J. Valenta, S. Cheylan, I. Pelant, L. Pavesi. Stimulated emission in the active planar optical waveguide made of silicon nanocrystals. Phys. Status Solidi C, 2, 3429-3434(2005).

    [29] A. Rapaport, M. Bass. The role of stimulated emission in luminescence decay. J. Lumin., 97, 180-189(2002).

    [30] M. Bresler, O. Gusev, E. Terukov, I. Yassievich, B. Zakharchenya, V. Emel’yanov, B. Kamenev, P. Kashkarov, E. Konstantinova, V. Y. Timoshenko. Stimulated emission in erbium-doped silicon structures under optical pumping. Mater. Sci. Eng. B, 81, 52-55(2001).

    [31] L. A. Coldren, S. W. Corzine, M. L. Mashanovitch. Diode Lasers and Photonic Integrated Circuits, 218(2012).

    [32] V. Ho, T. A. Tahtamouni, H. Jiang, J. Lin, J. Zavada, N. Vinh. Room-temperature lasing action in GaN quantum wells in the infrared 1.5  μm region. ACS Photon., 5, 1303-1309(2018).

    [33] M. Huda, S. Ali. A study on stimulated emission from erbium in silicon. Mater. Sci. Eng. B, 105, 146-149(2003).

    [34] M. Schultze, K. Ramasesha, C. Pemmaraju, S. Sato, D. Whitmore, A. Gandman, J. S. Prell, L. Borja, D. Prendergast, K. Yabana. Attosecond band-gap dynamics in silicon. Science, 346, 1348-1352(2014).

    [35] J. Noffsinger, E. Kioupakis, C. G. Van de Walle, S. G. Louie, M. L. Cohen. Phonon-assisted optical absorption in silicon from first principles. Phys. Rev. Lett., 108, 167402(2012).

    [36] X. Wang, B. Wang, L. Wang, R. Guo, H. Isshiki, T. Kimura, Z. Zhou. Extraordinary infrared photoluminescence efficiency of Er0.1Yb1.9SiO5 films on SiO2/Si substrates. Appl. Phys. Lett., 98, 071903(2011).

    [37] B. De Geyter, A. J. Houtepen, S. Carrillo, P. Geiregat, Y. Gao, S. t. Cate, J. M. Schins, D. Van Thourhout, C. Delerue, L. D. Siebbeles. Broadband and picosecond intraband absorption in lead-based colloidal quantum dots. ACS Nano, 6, 6067-6074(2012).

    [38] W. J. Miniscalco, R. S. Quimby. General procedure for the analysis of Er3+ cross sections. Opt. Lett., 16, 258-260(1991).

    [39] W. L. Ng, M. Lourenco, R. Gwilliam, S. Ledain, G. Shao, K. Homewood. An efficient room-temperature silicon-based light-emitting diode. Nature, 410, 192-194(2001).

    [40] V. X. Ho, T. V. Dao, H. X. Jiang, J. Y. Lin, J. M. Zavada, S. A. McGill, N. Q. Vinh. Photoluminescence quantum efficiency of Er optical centers in GaN epilayers. Sci. Rep., 7, 1(2017).

    [41] I. Costa, D. Pera, J. A. Silva. Improving light capture on crystalline silicon wafers. Mater. Lett., 272, 127825(2020).

    [42] M. Bürkle, M. Lozac’h, C. McDonald, M. Macias-Montero, B. Alessi, D. Mariotti, V. Švrček. Tuning the bandgap character of quantum-confined Si-Sn alloyed nanocrystals. Adv. Funct. Mater., 30, 1907210(2020).

    Jin Hong, Huimin Wen, Jiajing He, Jingquan Liu, Yaping Dan, Jens W. Tomm, Fangyu Yue, Junhao Chu, Chungang Duan. Stimulated emission at 1.54 μm from erbium/oxygen-doped silicon-based light-emitting diodes[J]. Photonics Research, 2021, 9(5): 714
    Download Citation