• Laser & Optoelectronics Progress
  • Vol. 57, Issue 5, 053001 (2020)
Zhizhong Zheng1、3、*, Zhong Yang1, Yuantian Qin2, and Liguo Wang2
Author Affiliations
  • 1College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 211100, China
  • 2College of Aeronautics, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, China
  • 3Nanjing Geological Survey Center, China Geological Survey, Nanjing, Jiangsu 210016, China
  • show less
    DOI: 10.3788/LOP57.053001 Cite this Article Set citation alerts
    Zhizhong Zheng, Zhong Yang, Yuantian Qin, Liguo Wang. Structure Analysis and Experiment of an Offner-Type Short-Wave Infrared Imaging Spectrometer[J]. Laser & Optoelectronics Progress, 2020, 57(5): 053001 Copy Citation Text show less
    Structural composition of an Offner imaging spectrometer
    Fig. 1. Structural composition of an Offner imaging spectrometer
    Exploded view of the components
    Fig. 2. Exploded view of the components
    Finite element model of imaging spectrometer
    Fig. 3. Finite element model of imaging spectrometer
    Nature mode sharp of mechanical structure and optical elements. (a) Mechanical structure; (b) optical elements
    Fig. 4. Nature mode sharp of mechanical structure and optical elements. (a) Mechanical structure; (b) optical elements
    RMS values between mirrors at 0-40 ℃
    Fig. 5. RMS values between mirrors at 0-40 ℃
    PV values between mirrors at 0-40 ℃
    Fig. 6. PV values between mirrors at 0-40 ℃
    RMS values between translating mirrors at 0-40 ℃
    Fig. 7. RMS values between translating mirrors at 0-40 ℃
    RMS values between rotating mirrors at 0-40 ℃
    Fig. 8. RMS values between rotating mirrors at 0-40 ℃
    Random test condition
    Fig. 9. Random test condition
    Vibration test scene
    Fig. 10. Vibration test scene
    Optical detection before and after vibration test
    Fig. 11. Optical detection before and after vibration test
    Thermo optical test scene
    Fig. 12. Thermo optical test scene
    Short-wave scanning pictures
    Fig. 13. Short-wave scanning pictures
    Spectral image and spectral curve at 20 ℃. (a) Spectral image; (b) spectral curve
    Fig. 14. Spectral image and spectral curve at 20 ℃. (a) Spectral image; (b) spectral curve
    PeakTemperatureMeanExtremedifference
    5 ℃10 ℃15 ℃20 ℃25 ℃30 ℃35 ℃
    A1414.501413.651414.301415.471416.711417.811417.441415.692.11
    B2202.452202.312203.102204.062200.412200.032199.912201.752.30
    Table 1. 0 Absorption position at different temperaturesnm
    ParameterValue
    Wavelength range /nm1000-2500
    Focal length /mm130
    F-number2.2
    Dispersion /(nm·pixel-1)7.5
    Slit dimension /mmHeight: 12, width: 0.025
    Detector array size /pixel320×256
    Detector pixel size /μm230×30
    Table 1. Index parameters of imaging spectrometer
    TemperatureMeanExtremedifference
    5 ℃10 ℃15 ℃20 ℃25 ℃30 ℃35 ℃
    38.736.1235.5739.5443.8342.8845.240.264.93
    Table 1. 1 Spectral bandwidth value under different temperaturenm
    MaterialDensity (g·cm-3)Modulus ofelasticity /GPaPoisson's ratioCoefficient of thermalexpansion /(10-6 K-1)
    6061 aluminum2.70700.3321.7
    45 steel7.852020.3010.6
    K9 glass2.51550.217.1
    Table 2. Material property sheet for imaging spectrometer
    DirectionParameterMirrorGratingImage planeCollimating mirror
    XRMS /nm0.530.200.520.04
    PV /nm12.891.692.251.57
    Rigid angular displacement /(″)Rigid line displacement /μm5.183.645.253.515.193.955.243.46
    YRMS /nm0.0100.0400.0500.004
    PV /mm1.530.633.112.12
    Rigid angular displacement /(″)Rigid line displacement /μm2.952.102.832.103.132.292.792.08
    ZRMS /nm0.140.050.200.01
    PV /mm5.401.030.530.15
    Rigid angular displacement /(″)Rigid line displacement /μm0.590.520.730.590.820.830.830.66
    Table 3. Shape errors and rigid displacement with 4 g acceleration load
    ComponentMirrorGratingImageplaneCollimatingmirror
    Mirror0.07″/1.16 μm0.57″/0.32 μm0.19″/0.23 μm
    Grating0.07″/1.16 μm-0.33″/0.46 μm0.10″/0.05 μm
    Image plane0.57″/0.32 μm0.33″/0.46 μm-0.41″/0.49 μm
    Collimatingmirror0.19″/0.23 μm0.10″/0.05 μm0.41″/0.49 μm-
    Table 4. Relative displacement between mirrors on X-direction 4 g acceleration load (angular displacement/line displacement)
    ComponentMirrorGratingImageplaneCollimatingmirror
    Mirror-0.12″/0.03 μm0.34″/0.24 μm0.16″/0.04 μm
    Grating0.12″/0.03 μm-0.38″/0.25 μm0.08″/0.03 μm
    Image plane0.34″/0.24 μm0.38″/0.25 μm-0.45″/0.28 μm
    Collimatingmirror0.16″/0.04 μm0.08″/0.03 μm0.45″/0.28 μm-
    Table 5. Relative displacement between mirrors on Y-direction 4 g acceleration load (angular displacement/line displacement)
    ComponentMirrorGratingImageplaneCollimatingmirror
    Mirror-0.29″/0.19 μm0.34″/0.33 μm0.31″/0.20 μm
    Grating0.29″/0.19 μm-0.51″/0.33 μm0.27″/0.10 μm
    Image plane0.34″/0.33 μm0.51″/0.33 μm-0.31″/0.23 μm
    Collimatingmirror0.31″/0.20 μm0.27″/0.10 μm0.31″/0.23 μm-
    Table 6. Relative displacement between mirrors on Z-direction 4 g acceleration load (angular displacement/line displacement)
    ParameterMirrorGratingImage planeCollimating mirror
    maxRMS /nm12.915.816.417.9
    PV /nm86.275.279.3102.8
    Rigid angular displacement /(″)39.835.133.340.4
    Rigid line displacement /μm50.436.324.755.6
    minRMS /nm5.04.64.85.0
    PV /nm32.124.032.427.1
    Rigid angular displacement /(″)9.98.68.318.7
    Rigid line displacement /μm12.69.16.213.7
    Table 7. Shape errors and rigid displacement of imaging spectrometer on 0-40 ℃ temperature load
    ComponentMirrorGratingImage planeCollimating mirror
    Mirror38.7″/40.3 μm54.3″/28.7 μm45.4″/53.9 μm
    Grating38.7″/40.3 μm32.3″/33.7 μm16.6″/19.0 μm
    Image plane54.3″/28.7 μm32.3″/33.7 μm31.7″/51.8 μm
    Collimatingmirror45.4″/53.9 μm16.6″/19.0 μm31.7″/51.8 μm
    Table 8. Max relative displacement between mirrors on 0-40 ℃ temperature load (angular displacement/line displacement)
    Frequency /HzMagnitude /gScanningspeed /(oct·min-1)Experimentaldirection
    5-1500.85X,Y,Z
    Table 9. Sinusoidal vibration test condition
    Zhizhong Zheng, Zhong Yang, Yuantian Qin, Liguo Wang. Structure Analysis and Experiment of an Offner-Type Short-Wave Infrared Imaging Spectrometer[J]. Laser & Optoelectronics Progress, 2020, 57(5): 053001
    Download Citation