• Photonics Research
  • Vol. 7, Issue 2, 155 (2019)
Qixiang Cheng1、*, Liang Yuan Dai1, Nathan C. Abrams1, Yu-Han Hung1, Padraic E. Morrissey2, Madeleine Glick1, Peter O’Brien2, and Keren Bergman1
Author Affiliations
  • 1Department of Electrical Engineering, Columbia University, New York, New York 10027, USA
  • 2Tyndall National Institute, University College Cork, Cork, Ireland
  • show less
    DOI: 10.1364/PRJ.7.000155 Cite this Article Set citation alerts
    Qixiang Cheng, Liang Yuan Dai, Nathan C. Abrams, Yu-Han Hung, Padraic E. Morrissey, Madeleine Glick, Peter O’Brien, Keren Bergman. Ultralow-crosstalk, strictly non-blocking microring-based optical switch[J]. Photonics Research, 2019, 7(2): 155 Copy Citation Text show less
    References

    [1] Q. Cheng, S. Rumley, M. Bahadori, K. Bergman. Photonic switching in high performance datacenters [Invited]. Opt. Express, 26, 16022-16043(2018).

    [2] J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, J. V. Gates. 1100 × 1100 port MEMS-based optical crossconnect with 4-dB maximum loss. IEEE Photon. Technol. Lett., 15, 1537-1539(2003).

    [3] K. Kwon, T. J. Seok, J. Henriksson, J. Luo, L. Ochikubo, J. Jacobs, R. S. Muller, M. C. Wu. 128 × 128 silicon photonic MEMS switch with scalable row/column addressing. Conference on Lasers and Electro-Optics, SF1A.4(2018).

    [4] B. Robertson, H. Yang, M. M. Redmond, N. Collings, J. R. Moore, J. Liu, A. M. Jeziorska-Chapman, M. Pivnenko, S. Lee, A. Wonfor, I. H. White, W. A. Crossland, D. P. Chu. Demonstration of multi-casting in a 1 × 9 LCOS wavelength selective switch. J. Lightwave Technol., 32, 402-410(2014).

    [5] H. C. H. Mulvad, A. Parker, B. King, D. Smith, M. Kovacs, S. Jain, J. Hayes, M. Petrovich, D. J. Richardson, N. Parsons. Beam-steering all-optical switch for multi-core fibers. Optical Fiber Communication Conference, Tu2C.4(2017).

    [6] Q. Cheng, A. Wonfer, J. L. Wei, R. V. Penty, I. H. White. Low-energy, high-performance lossless 8 × 8 SOA switch. Optical Fiber Communication Conference, Th4E.6(2015).

    [7] R. Stabile, A. Albores-Mejia, K. A. Williams. Monolithic active-passive 16 × 16 optoelectronic switch. Opt. Lett., 37, 4666-4668(2012).

    [8] Q. Cheng, A. Wonfor, J. L. Wei, R. V. Penty, I. H. White. Monolithic MZI-SOA hybrid switch for low-power and low-penalty operation. Opt. Lett., 39, 1449-1452(2014).

    [9] K. Suzuki, R. Konoike, J. Hasegawa, S. Suda, H. Matsuura, K. Ikeda, S. Namiki, H. Kawashima. Low insertion loss and power efficient 32 × 32 silicon photonics switch with extremely-high-Δ PLC connector. Optical Fiber Communication Conference, Th4B.5(2018).

    [10] T. Chu, L. Qiao, W. Tang, D. Guo, W. Wu. Fast, high-radix silicon photonic switches. Optical Fiber Communications Conference and Exposition (OFC), Th1J.4(2018).

    [11] L. Chen, Y.-K. Chen. Compact, low-loss and low-power 8 × 8 broadband silicon optical switch. Opt. Express, 20, 18977-18985(2012).

    [12] P. Dasmahapatra, R. Stabile, A. Rohit, K. A. Williams. Optical crosspoint matrix using broadband resonant switches. IEEE J. Sel. Top. Quantum Electron., 20, 5900410(2014).

    [13] N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, M. Lipson. Optical 4 × 4 hitless silicon router for optical networks-on-chip (NoC). Opt. Express, 16, 15915-15922(2008).

    [14] Z. Pan, S. Fu, L. Lu, D. Li, W. Chang, D. Liu, M. Zhang. On-chip cyclic-AWG-based 12 × 12 silicon wavelength routing switches with minimized port-to-port insertion loss fluctuation. Photon. Res., 6, 380-384(2018).

    [15] Q. Cheng, M. Ding, A. Wonfor, J. Wei, R. V. Penty, I. H. White. The feasibility of building a 64 × 64 port count SOA-based optical switch. International Conference on Photonics in Switching (PS), 199-201(2015).

    [16] A. Novack, Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Q. Li, Y. Yang, Y. Ma, Y. Zhang, K. Padmaraju, K. Bergmen, A. E. Lim, G. Lo, M. Hochberg. A 30  GHz silicon photonic platform. Proc. SPIE, 8781, 878107(2013).

    [17] M. Bahadori, A. Gazman, N. Janosik, S. Rumley, Z. Zhu, R. Polster, Q. Cheng, K. Bergman. Thermal rectification of integrated microheaters for microring resonators in silicon photonics platform. J. Lightwave Technol., 36, 773-788(2018).

    [18] Q. Xu, B. Schmidt, S. Pradhan, M. Lipson. Micrometre-scale silicon electro-optic modulator. Nature, 435, 325-327(2005).

    [19] A. S. P. Khope, T. Hirokawa, A. M. Netherton, M. Saeidi, Y. Xia, N. Volet, C. Schow, R. Helkey, L. Theogarajan, A. A. M. Saleh, J. E. Bowers, R. C. Alferness. On-chip wavelength locking for photonic switches. Opt. Lett., 42, 4934-4937(2017).

    [20] K. Padmaraju, D. F. Logan, T. Shiraishi, J. J. Ackert, A. P. Knights, K. Bergman. Wavelength locking and thermally stabilizing microring resonators using dithering signals. J. Lightwave Technol., 32, 505-512(2014).

    [21] C. Sun, M. Wade, M. Georgas, S. Lin, L. Alloatti, B. Moss, R. Kumar, A. H. Atabaki, F. Pavanello, J. M. Shainline, J. S. Orcutt, R. J. Ram, M. Popović, V. Stojanović. A 45 nm CMOS-SOI monolithic photonics platform with bit-statistics-based resonant microring thermal tuning. IEEE J. Solid-State Circuits, 51, 893-907(2016).

    [22] Q. Cheng, L. Y. Dai, M. Bahadori, N. C. Abrams, P. E. Morrissey, M. Glick, P. O’Brien, K. Bergman. Si/SiN microring-based optical router in switch-and-select topology. European Conference on Optical Communication (ECOC), We1C.3(2018).

    [23] M. Bahadori, M. Nikdast, S. Rumley, L. Y. Dai, N. Janosik, T. Van Vaerenbergh, A. Gazman, Q. Cheng, R. Polster, K. Bergman. Design space exploration of microring resonators in silicon photonic interconnects: impact of the ring curvature. J. Lightwave Technol., 36, 2767-2782(2018).

    [24] Q. Cheng, M. Bahadori, S. Rumley, K. Bergman. Highly-scalable, low-crosstalk architecture for ring-based optical space switch fabrics. IEEE Optical Interconnects Conference (OI), 41-42(2017).

    [25] L. S. Yan, Y. Wang, B. Zhang, C. Yu, J. McGeehan, L. Paraschis, A. E. Willner. Reach extension in 10-Gb/s directly modulated transmission systems using asymmetric and narrowband optical filtering. Opt. Express, 13, 5106-5115(2005).

    [26] J. Ruzbarsky, J. Turan, L. Ovsenik. Effects act on transmitted signal in a fully optical fiber WDM systems. IEEE 13th International Scientific Conference on Informatics, 217-221(2015).

    [27] Q. Cheng, M. Bahadori, M. Glick, S. Rumley, K. Bergman. Recent advances in optical technologies for data centers: a review. Optica, 5, 1354-1370(2018).

    [28] W. D. Sacher, Y. Huang, G. Lo, J. K. S. Poon. Multilayer silicon nitride-on–silicon integrated photonic platforms and devices. J. Lightwave Technol., 33, 901-910(2015).

    [29] J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, J. E. Bowers. Planar waveguides with less than 0.1  dB/m propagation loss fabricated with wafer bonding. Opt. Express, 19, 24090-24101(2011).

    Qixiang Cheng, Liang Yuan Dai, Nathan C. Abrams, Yu-Han Hung, Padraic E. Morrissey, Madeleine Glick, Peter O’Brien, Keren Bergman. Ultralow-crosstalk, strictly non-blocking microring-based optical switch[J]. Photonics Research, 2019, 7(2): 155
    Download Citation