• Photonics Research
  • Vol. 6, Issue 6, 579 (2018)
Yan Zhi1, Xiangbo Yang1、2、3、*, Jiaye Wu2, Shiping Du4, Peichao Cao1, Dongmei Deng2, and Chengyi Timon Liu3
Author Affiliations
  • 1MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
  • 2Guangzhou Key Laboratory for Special Fiber Photonic Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
  • 3School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China
  • 4Department of Data and Computer Science, Sun Yat-sen University, Guangzhou 510006, China
  • show less
    DOI: 10.1364/PRJ.6.000579 Cite this Article Set citation alerts
    Yan Zhi, Xiangbo Yang, Jiaye Wu, Shiping Du, Peichao Cao, Dongmei Deng, Chengyi Timon Liu. Extraordinary characteristics for one-dimensional parity-time-symmetric periodic ring optical waveguide networks[J]. Photonics Research, 2018, 6(6): 579 Copy Citation Text show less
    References

    [1] R. El-Ganainy, K. G. Makris, D. N. Christodoulides, Z. H. Musslimani. Theory of coupled optical PT-symmetric structures. Opt. Lett., 32, 2632-2634(2007).

    [2] Z. H. Musslimani, K. G. Makris, R. El-Ganainy, D. N. Christodoulides. Optical solitons in PT periodic potentials. Phys. Rev. Lett., 100, 030402(2008).

    [3] K. G. Makris, R. El-Ganainy, D. N. Christodoulides, Z. H. Musslimani. Beam dynamics in PT symmetric optical lattices. Phys. Rev. Lett., 100, 103904(2008).

    [4] S. Longhi. Bloch oscillations in complex crystals with PT symmetry. Phys. Rev. Lett., 103, 123601(2009).

    [5] Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, D. N. Christodoulides. Unidirectional invisibility induced by PT-symmetric periodic structures. Phys. Rev. Lett., 106, 213901(2011).

    [6] F. Nazari, M. Nazari, M. K. Moravvej-Farshi. A 2 × 2 spatial optical switch based on PT-symmetry. Opt. Lett., 36, 4368-4370(2011).

    [7] S. Hu, X. Ma, D. Lu, Z. Yang, Y. Zheng, W. Hu. Solitons supported by complex PT-symmetric Gaussian potentials. Phys. Rev. A, 84, 043818(2011).

    [8] Y. D. Chong, L. Ge, A. D. Stone. PT-symmetry breaking and laser-absorber modes in optical scattering systems. Phys. Rev. Lett., 106, 093902(2011).

    [9] L. Ge, Y. D. Chong, A. D. Stone. Conservation relations and anisotropic transmission resonances in one-dimensional PT-symmetric photonic heterostructures. Phys. Rev. A, 85, 023802(2012).

    [10] Z. Lin, J. Schindler, F. M. Ellis, T. Kottos. Experimental observation of the dual behavior of PT-symmetric scattering. Phys. Rev. A, 85, 050101(2012).

    [11] S. Hu, X. Ma, D. Lu, Y. Zheng, W. Hu. Defect solitons in parity-time symmetric optical lattices with nonlocal nonlinearity. Phys. Rev. A, 85, 043826(2012).

    [12] B. Peng, S. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, L. Yang. Parity-time-symmetric whispering-gallery microcavities. Nat. Phys., 10, 394-398(2014).

    [13] R. Fleury, D. Sounas, A. Alù. An invisible acoustic sensor based on parity-time symmetry. Nat. Commun., 6, 5905(2015).

    [14] L. Jin, X. Z. Zhang, G. Zhang, Z. Song. Reciprocal and unidirectional scattering of parity-time symmetric structures. Sci. Rep., 6, 20976(2016).

    [15] S. Ding, G. P. Wang. Extraordinary reflection and transmission with direction dependent wavelength selectivity based on parity-time-symmetric multilayers. J. Appl. Phys., 117, 023104(2015).

    [16] P. Cao, X. Yang, S. Wang, Y. Huang, N. Wang, D. Deng, C. T. Liu. Ultrastrong graphene absorption induced by one-dimensional parity-time symmetric photonic crystal. IEEE Photon. J., 9, 2200209(2017).

    [17] Z. Z. Liu, Q. Zhang, Y. Chen, J. J. Xiao. General coupled-mode analysis of a geometrically symmetric waveguide array with nonuniform gain and loss. Photon. Res., 5, 57-63(2017).

    [18] C. M. Bender, S. Boettcher. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett., 80, 5243-5246(1998).

    [19] C. M. Bender, S. Boettcher, P. N. Meisinger. PT-symmetric quantum mechanics. J. Math. Phys., 40, 2201-2229(1999).

    [20] Z. Q. Zhang, C. C. Wong, K. K. Fung, Y. L. Ho, W. L. Chan, S. C. Kan, T. L. Chan, N. Cheung. Observation of localized electromagnetic waves in three-dimensional networks of waveguides. Phys. Rev. Lett., 81, 5540-5543(1998).

    [21] L. Dobrzynski, A. Akjouj, B. Djafari-Rouhani, J. O. Vasseur, J. Zemmouri. Giant gaps in photonic band structures. Phys. Rev. B, 57, R9388-R9391(1998).

    [22] S. K. Cheung, T. L. Chan, Z. Q. Zhang, C. T. Chan. Large photonic band gaps in certain periodic and quasiperiodic networks in two and three dimensions. Phys. Rev. B, 70, 125104(2004).

    [23] Z. Y. Wang, X. Yang. Strong attenuation within the photonic band gaps of multiconnected networks. Phys. Rev. B, 76, 235104(2007).

    [24] X. Xu, X. Yang, S. Wang, T. C. Liu, D. Deng. Sufficient condition for producing photonic band gaps in one-dimensional optical waveguide networks. Opt. Express, 23, 27576-27588(2015).

    [25] X. Yang, H. Song, T. C. Liu. Comb-like optical transmission spectrum resulting from a four-cornered two-waveguide-connected network. Phys. Lett. A, 377, 3048-3051(2013).

    [26] Y. Wang, X. Yang, J. Lu, G. Zhang, C. T. Liu. Comb-like optical transmission spectra generated from one-dimensional two-segment-connected two-material waveguide networks optimized by genetic algorithm. Phys. Lett. A, 378, 1200-1207(2014).

    [27] J. Lu, X. Yang, G. Zhang, L. Cai. Large photonic band gaps and strong attenuations of two-segment-connected Peano derivative networks. Phys. Lett. A, 375, 3904-3909(2011).

    [28] Q. Xiao, X. Yang, J. Lu, C. Liu. Huge photonic band gaps with strong attenuations resulted from quasi-one-dimensional waveguide networks composed of triangular fundamental loops. Opt. Commun., 285, 3775-3780(2012).

    [29] Z. Tang, X. Yang, J. Lu, C. T. Liu. Super-strong photonic localization in symmetric two-segment-connected triangular defect waveguide networks. Opt. Commun., 331, 53-58(2014).

    [30] N. Wang, X. Yang, X. Xu, Y. Huang, P. Cao, D. Deng, C. T. Liu, X. Hu. Strong photonic localizations generated in single-optical-waveguide ring. IEEE Photon. J., 8, 4502513(2016).

    [31] X. Hu, X. Yang, D. Deng. A novel approach for generating giant electronic persistent currents in symmetric defect mesoscopic-ring networks. Phys. Lett. A, 381, 1241-1247(2017).

    [32] L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, A. Scherer. Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. Nat. Mater., 12, 108-113(2013).

    [33] M. J. Dodge. Refractive properties of magnesium fluoride. Appl. Opt., 23, 1980-1985(1984).

    [34] Y. Liu, Z. Hou, P. M. Hui, W. Sritrakool. Electronic transport properties of Sierpinski lattices. Phys. Rev. B, 60, 13444-13452(1999).

    [35] Z. Q. Zhang, P. Sheng. Wave localization in random networks. Phys. Rev. B, 49, 83-89(1994).

    [36] S. Phang, T. M. Benson, H. Susanto, S. C. Creagh, G. Gradoni, P. D. Sewell, A. Vukovic. Recent Trends in Computational Photonics(2017).

    [37] Y. Choi, C. Hahn, J. W. Yoon, S. H. Song, P. Berini. Extremely broadband, on-chip optical nonreciprocity enabled by mimicking nonlinear anti-adiabatic quantum jumps near exceptional points. Nat. Commun., 8, 14154(2017).

    CLP Journals

    [1] Tian-Shu Jiang, Meng Xiao, Zhao-Qing Zhang, Che-Ting Chan. Physics and topological properties of periodic and aperiodic transmission line networks[J]. Acta Physica Sinica, 2020, 69(15): 150301-1

    [2] Jiaye Wu, Ze Tao Xie, Yanhua Sha, H. Y. Fu, Qian Li. Epsilon-near-zero photonics: infinite potentials[J]. Photonics Research, 2021, 9(8): 1616

    Yan Zhi, Xiangbo Yang, Jiaye Wu, Shiping Du, Peichao Cao, Dongmei Deng, Chengyi Timon Liu. Extraordinary characteristics for one-dimensional parity-time-symmetric periodic ring optical waveguide networks[J]. Photonics Research, 2018, 6(6): 579
    Download Citation