Contents
2018
Volume: 6 Issue 6
26 Article(s)

Export citation format
Reviews
Physical Optics
Extraordinary characteristics for one-dimensional parity-time-symmetric periodic ring optical waveguide networks
Yan Zhi, Xiangbo Yang, Jiaye Wu, Shiping Du, Peichao Cao, Dongmei Deng, and Chengyi Timon Liu
In this paper, we design a one-dimensional (1D) parity-time-symmetric periodic ring optical waveguide network (PTSPROWN) and investigate its extraordinary optical characteristics. It is found that quite different from traditional vacuum/dielectric optical waveguide networks, 1D PTSPROWN cannot produce a photonic ordinary propagation mode, but can generate simultaneously two kinds of photonic nonpropagation modes: attenuation propagation mode and gain propagation mode. It creates neither passband nor stopband and possesses no photonic band structure. This makes 1D PTSPROWN possess richer spontaneous PT-symmetric breaking points and causes interesting extremum spontaneous PT-symmetric breaking points to appear, where electromagnetic waves can create ultrastrong extraordinary transmission, reflection, and localization, and the maximum can arrive at 6.6556×1012 and is more than 7 orders of magnitude larger than the results reported previously. 1D PTSPROWN may possess potential in designing high-efficiency optical energy saver devices, optical amplifiers, optical switches with ultrahigh monochromaticity, and so on.
Photonics Research
  • Publication Date: May. 23, 2018
  • Vol. 6, Issue 6, 579 (2018)
Research Articles
Integrated Optics
Broadband rhenium disulfide optical modulator for solid-state lasers
Xiancui Su, Baitao Zhang, Yiran Wang, Guanbai He, Guoru Li, Na Lin, Kejian Yang, Jingliang He, and Shande Liu
Rhenium disulfide (ReS2), a member of group VII transition metal dichalcogenides (TMDs), has attracted increasing attention because of its unique distorted 1T structure and electronic and optical properties, which are much different from those of group VI TMDs (MoS2, WS2, MoSe2, WSe2, etc.). It has been proved that bulk ReS2 behaves as a stack of electronically and vibrationally decoupled monolayers, which offers remarkable possibilities to prepare a monolayer ReS2 facilely and offers a novel platform to study photonic properties of TMDs. However, due to the large and layer-independent bandgap, the nonlinear optical properties of ReS2 from the visible to mid-infrared spectral range have not yet been investigated. Here, the band structure of ReS2 with the introduction of defects is simulated by the ab initio method, and the results indicate that the bandgap can be reduced from 1.38 to 0.54 eV with the introduction of defects in a suitable range. In the experiment, using a bulk ReS2 with suitable defects as the raw material, a few-layered broadband ReS2 saturable absorber (SA) is prepared by the liquid phase exfoliation method. Using the as-prepared ReS2 SA, passively Q-switched solid-state lasers at wavelengths of 0.64, 1.064, and 1.991 μm are in
Photonics Research
  • Publication Date: Apr. 26, 2018
  • Vol. 6, Issue 6, 498 (2018)
Numerical modeling of a linear photonic system for accurate and efficient time-domain simulations
Yinghao Ye, Domenico Spina, Yufei Xing, Wim Bogaerts, and Tom Dhaene
In this paper, a novel modeling and simulation method for general linear, time-invariant, passive photonic devices and circuits is proposed. This technique, starting from the scattering parameters of the photonic system under study, builds a baseband equivalent state-space model that splits the optical carrier frequency and operates at baseband, thereby significantly reducing the modeling and simulation complexity without losing accuracy. Indeed, it is possible to analytically reconstruct the port signals of the photonic system under study starting from the time-domain simulation of the corresponding baseband equivalent model. However, such equivalent models are complex-valued systems and, in this scenario, the conventional passivity constraints are not applicable anymore. Hence, the passivity constraints for scattering parameters and state-space models of baseband equivalent systems are presented, which are essential for time-domain simulations. Three suitable examples demonstrate the feasibility, accuracy, and efficiency of the proposed method.
Photonics Research
  • Publication Date: May. 23, 2018
  • Vol. 6, Issue 6, 560 (2018)
Ultra-compact broadband polarization beam splitter with strong expansibility
Jie Huang, Junbo Yang, Dingbo Chen, Xin He, Yunxin Han, Jingjing Zhang, and Zhaojian Zhang
Based on the traditional directional coupler, we proposed a scheme to design on-chip polarization beam splitters using an inverse design method. In our scheme, the coupling area of the designed devices are only 0.48 μm×6.4 μm. By manipulating the refractive index of the coupling region, the devices can work in C-band, L-band, O-band, or any other communication band. Different from conventional design methods, which need to adjust the design parameters artificially, if the initial conditions are determined, the proposed scheme can automatically adjust the design parameters of devices according to specific requirements. The simulation results show that the insertion losses of the designed polarization beam splitters can be less than 0.4 dB (0.35 dB) for TE (TM) mode at the wavelengths of 1310, 1550, and 1600 nm, and the extinction ratios are larger than 19.9 dB for the TE and TM modes at all three wavelengths. Besides, the extinction ratios of both polarization states are more than 14.5 dB within the wavelength range of 1286–1364 nm, 1497–1568 nm, and 1553–1634 nm. At the same time, the insertion losses are smaller than 0.46 dB.
Photonics Research
  • Publication Date: May. 23, 2018
  • Vol. 6, Issue 6, 574 (2018)
Lasers and Laser Optics
Passively Q-switched erbium doped fiber laser using a gold nanostars based saturable absorber
Zhe Kang, Mingyi Liu, Zhenwei Li, Siqing Li, Zhixu Jia, Chengzhi Liu, Weiping Qin, and Guanshi Qin
In this paper, we propose and demonstrate an all-fiber passively Q-switched erbium doped fiber laser (EDFL) by using gold nanostars (GNSs) as a saturable absorber (SA) for the first time, to the best of our knowledge. In comparison with other gold nanomorphologies, GNSs have multiple localized surface plasmon resonances, which means that they can be used to construct wideband ultrafast pulse lasers. By inserting the GNS SA into an EDFL cavity pumped by a 980 nm laser diode, a stable passively Q-switched laser at 1564.5 nm was achieved for a threshold pump power of 40 mW. By gradually increasing the pump power from 40 to 120 mW, the pulse duration decreases from 12.8 to 5.3 μs and the repetition rate increases from 10 to 17 kHz. Our results indicate that the GNSs are a promising SA for constructing pulse lasers.
Photonics Research
  • Publication Date: May. 07, 2018
  • Vol. 6, Issue 6, 549 (2018)
Active/passive Q-switching operation of 2  μm Tm,Ho:YAP laser with an acousto-optical Q-switch/MoS2 saturable absorber mirror
Linjun Li, Xining Yang, Long Zhou, Wenqiang Xie, Yunlong Wang, Yingjie Shen, Yuqiang Yang, Wenlong Yang, Wei Wang, Zhiwei Lv, Xiaoming Duan, and Minghua Chen
Photonics Research
  • Publication Date: May. 23, 2018
  • Vol. 6, Issue 6, 614 (2018)
Metamaterials
Tailoring active color rendering and multiband photodetection in a vanadium-dioxide-based metamaterial absorber
Shichao Song, Xiaoliang Ma, Mingbo Pu, Xiong Li, Yinghui Guo, Ping Gao, and Xiangang Luo
Metamaterials have demonstrated exotic electromagnetic properties, which offer a good platform for realizing light absorption, photodetection, filtering, and so on. However, broadband multifunctional metamaterial absorbers are restricted in cascaded structures. Here, broadband multifunctional properties were realized by introducing vanadium dioxide into a metamaterial absorber. Through the modified design and highly efficient utilization of multiple resonant modes, both plasmonic tunable color filters and near-infrared photodetectors can be simultaneously achieved by this construction. Meanwhile, active color and a photodetection band in the near-infrared range can become tunable with the insulating–metallic transition of vanadium dioxide. Thus, the variations of rendering colors could correspondingly indicate shifts of the near-infrared photodetection bands. This method theoretically confirms the feasibility of designing multifunctional devices via a vanadium-dioxide-based metamaterial absorber, which holds great promise for future versatile utilization of multiple physical mechanisms to achieve numerous functionalities in a simple nanostructure or device.
Photonics Research
  • Publication Date: Apr. 26, 2018
  • Vol. 6, Issue 6, 492 (2018)
High-efficiency all-dielectric transmission metasurface for linearly polarized light in the visible region
Liu Yang, Dong Wu, Yumin Liu, Chang Liu, Zenghui Xu, Hui Li, Zhongyuan Yu, Li Yu, and Han Ye
We propose and numerically investigate an efficient transmission-mode metasurface that consists of quasi-continuous trapezoid-shaped crystalline silicon nanoantennas on a quartz substrate. This metasurface provides a linear phase gradient and realizes both full 2π phase shift and high transmission efficiency in the operating wavelength range from 740 to 780 nm. At the central wavelength around 751 nm, the total transmission efficiency is up to 88.0% and the section of the desired anomalous refraction is 80.4%. The anomalous refraction angle is 29.62°, and larger refraction angle can be achieved by changing the period of the super cell. We demonstrate a refraction angle as large as 38.59°, and the anomalous transmission efficiency reaches 76.6% at wavelength of 741 nm. It is worth mentioning that the structure is much simpler than conventional metasurfaces based on arrays of discrete nanoantennas. Our research may pave the way for designing efficient all-dielectric phase-gradient metasurfaces and applying them in integrated optical devices for wavefront control.
Photonics Research
  • Publication Date: Apr. 26, 2018
  • Vol. 6, Issue 6, 517 (2018)
Nonlinear Optics
High energy soliton pulse generation by a magnetron-sputtering-deposition-grown MoTe2 saturable absorber
Jintao Wang, Zike Jiang, Hao Chen, Jiarong Li, Jinde Yin, Jinzhang Wang, Tingchao He, Peiguang Yan, and Shuangchen Ruan
The pulse energy in the ultrafast soliton fiber laser oscillators is usually limited by the well-known wave-breaking phenomenon owing to the absence of a desirable real saturable absorber (SA) with high power tolerance and large modulation depth. Here, we report a type of microfiber-based MoTe2 SA fabricated by the magnetron-sputtering deposition (MSD) method. High-energy wave-breaking free soliton pulses were generated with pulse duration/pulse energy/average output power of 229 fs/2.14 nJ/57 mW in the 1.5 μm regime and 1.3 ps/13.8 nJ/212 mW in the 2 μm regime, respectively. To our knowledge, the generated soliton pulses at 1.5 μm had the shortest pulse duration and the highest output power among the reported erbium-doped fiber lasers mode locked by transition metal dichalcogenides. Moreover, this was the first demonstration of a MoTe2-based SA in fiber lasers in the 2 μm regime, and the pulse energy/output power are the highest in the reported thulium-doped fiber lasers mode locked by two-dimensional materials. Our results suggest that a microfiber-based MoTe2 SA could be used as an excellent photonic device for ultrafast pulse generation, and the MSD technique opens a promising route to produce a high-performance SA with high power tolerance and large modulation depth, which are beneficial for high-energy wave-breaking free pulse generation.
Photonics Research
  • Publication Date: Apr. 30, 2018
  • Vol. 6, Issue 6, 535 (2018)
Generation rate scaling: the quality factor optimization of microring resonators for photon-pair sources
Kai Guo, Xiaodong Shi, Xiaolin Wang, Junbo Yang, Yunhong Ding, Haiyan Ou, and Yijun Zhao
To achieve photon-pair generation scaling, we optimize the quality factor of microring resonators for efficient continuous-wave-pumped spontaneous four-wave mixing. Numerical studies indicate that a high intrinsic quality factor makes high pair rate and pair brightness possible, in which the maximums take place under overcoupling and critical-coupling conditions, respectively. We fabricate six all-pass-type microring resonator samples on a silicon-on-insulator chip involving gap width as the only degree of freedom. The signal count rate, pair brightness, and coincidence rate of all the samples are characterized, which are then compared with the modified simulations by taking the detector saturation and nonlinear loss into account. Being experimentally validated for the first time to the best of our knowledge, this work explicitly demonstrates that reducing the round-trip loss in a ring cavity and designing the corresponding optimized gap width are more effective to generate high-rate or high-brightness photon pairs than the conventional strategy of simply increasing the quality factor.
Photonics Research
  • Publication Date: May. 23, 2018
  • Vol. 6, Issue 6, 587 (2018)
Ultraflat, broadband, and highly coherent supercontinuum generation in all-solid microstructured optical fibers with all-normal dispersion | On the Cover
Chunlei Huang, Meisong Liao, Wanjun Bi, Xia Li, Lili Hu, Long Zhang, Longfei Wang, Guanshi Qin, Tianfeng Xue, Danping Chen, and Weiqing Gao
High flatness, wide bandwidth, and high-coherence properties of supercontinuum (SC) generation in fibers are crucial in many applications. It is challenging to achieve SC spectra in a combination of the properties, since special dispersion profiles are required, especially when pump pulses with duration over 100 fs are employed. We propose an all-solid microstructured fiber composed only of hexagonal glass elements. The optimized fiber possesses an ultraflat all-normal dispersion profile, covering a wide wavelength interval of approximately 1.55 μm. An SC spectrum spanning from approximately 1030 to 2030 nm (corresponding to nearly one octave) with flatness <3 dB is numerically generated in the fiber with 200 fs pump pulses at 1.55 μm. The results indicate that the broadband ultraflat SC sources can be all-fiber and miniaturized due to commercially achievable 200-fs fiber lasers. Moreover, the SC pulses feature high coherence and a single pulse in the time domain, which can be compressed to 13.9-fs pulses with high quality even for simple linear chirp compensation. The Fourier-limited pulse duration of the spectrum is 3.19 fs, corresponding to only 0.62 optical cycles.
Photonics Research
  • Publication Date: May. 23, 2018
  • Vol. 6, Issue 6, 601 (2018)
Watt-level and spectrally flat mid-infrared supercontinuum in fluoroindate fibers
Francis Théberge, Nancy Bérubé, Samuel Poulain, Solenn Cozic, Louis-Rafaël Robichaud, Martin Bernier, and Réal Vallée
We report on infrared supercontinuum (SC) generation in step-index fluoroindate-based fiber by using an all-fiber laser source. In comparison to widely used ZBLAN fibers for high-power mid-infrared (MIR) SC generation, fluoroindate fibers have multiphoton absorption edges at significantly longer wavelengths and can sustain similar intensities. Recent developments highlighted in the present study allowed the production of fluoroindate fibers with MIR background loss of 2 dB/km, which is similar to or even better than ZBLAN fibers. By using an all-fiber picosecond laser source based on an erbium amplifier followed by a thulium power amplifier, we demonstrate the generation of 1.0 W infrared SC spanning over 2.25 octaves from 1 μm to 5 μm. The generated MIR SC also exhibits high spectral flatness with a 6 dB spectral bandwidth from 1.91 μm to 4.77 μm and an average power two orders of magnitude greater than in previous demonstrations with a similar spectral distribution.
Photonics Research
  • Publication Date: May. 23, 2018
  • Vol. 6, Issue 6, 609 (2018)
Optical Vortices
Optical vortex copier and regenerator in the Fourier domain
Xiaodong Qiu, Fangshu Li, Haigang Liu, Xianfeng Chen, and Lixiang Chen
The generation and manipulation of optical vortices are of fundamental importance in a variety of promising applications. Here, we develop a nonlinear optical paradigm to implement self- and cross-convolution of optical vortex arrays, demonstrating the features of a vortex copier and regenerator. We use a phase-only spatial light modulator to prepare the 1064 nm invisible fundamental light to carry special optical vortex arrays and use a potassium titanyl phosphate crystal to perform type II second-harmonic generation in the Fourier domain to achieve 532 nm visible structured vortices. Based on pure cross-convolution, we succeed in copying arbitrary-order single vortices as well as their superposition states onto a prearranged array of fundamental Gaussian spots. Also, based on the simultaneous effect of self- and cross-convolutions, we can expand the initial vortex lattices to regenerate more vortices carrying various higher topological charges. Our presented method of realizing an optical vortex copier and regenerator could find direct applications in optical manipulation, optical imaging, optical communication, and quantum information processing with structured vortex arrays.
Photonics Research
  • Publication Date: May. 24, 2018
  • Vol. 6, Issue 6, 641 (2018)
Optics at Surfaces
Photonic spin Hall effect on the surface of anisotropic two-dimensional atomic crystals
Wenshuai Zhang, Weijie Wu, Shizhen Chen, Jin Zhang, Xiaohui Ling, Weixing Shu, Hailu Luo, and Shuangchun Wen
We examine the spin-orbit interaction of light and photonic spin Hall effect on the surface of anisotropic two-dimensional atomic crystals. As an example, the photonic spin Hall effect on the surface of black phosphorus is investigated. The photonic spin Hall effect manifests itself as the spin-dependent beam shifts in both transverse and in-plane directions. We demonstrate that the spin-dependent shifts are sensitive to the orientation of the optical axis, doping concentration, and interband transitions. These results can be extensively extended to other anisotropic two-dimensional atomic crystals. By incorporating the quantum weak measurement techniques, the photonic spin Hall effect holds great promise for detecting the parameters of anisotropic two-dimensional atomic crystals.
Photonics Research
  • Publication Date: Apr. 26, 2018
  • Vol. 6, Issue 6, 511 (2018)
Wide-field in situ multiplexed Raman imaging with superresolution
Houkai Chen, Xiaojing Wu, Yuquan Zhang, Yong Yang, Changjun Min, Siwei Zhu, Xiaocong Yuan, Qiaoliang Bao, and Jing Bu
Photonics Research
  • Publication Date: Apr. 30, 2018
  • Vol. 6, Issue 6, 530 (2018)
Plasmonics
Resonators
Loss-induced control of light propagation direction in passive linear coupled optical cavities
Carlo Edoardo Campanella, Martino De Carlo, Antonello Cuccovillo, and Vittorio M. N. Passaro
Redirecting the flow of light on the basis of the absorption/gain properties of optical systems is of great interest in many research fields, ranging from optical routing to optical cloaking. In this paper we investigate the control of the direction of the light propagation through loss-induced absorption in passive linear coupled optical systems. The considered optical system consists of a mode-splitting resonant cavity formed by coupling a Fabry–Perot (FP) cavity with a ring resonator. The coalescence of the asymmetric resonances, generated through mode-splitting dynamics, is the spectral result of the parity time symmetry breaking at FP resonance wavelengths. For specific values of the FP overall loss, a predominant backward propagation in the FP ring resonator occurs. In fiber optics technology, this device shows an ability to invert the sense of propagation of the light, quantified through the contrast ratio, in the order of 20 dB. This value can be obtained by externally varying the FP loss coefficient for a fixed set of the other physical parameters of the FP ring resonator. Our results can open a new way toward novel high-performance optical modulation and routing schemes.
Photonics Research
  • Publication Date: Apr. 27, 2018
  • Vol. 6, Issue 6, 525 (2018)
Electric field tunable strong transverse light current from nanoparticles embedded in liquid crystal
Jinhua Li, and Xiangdong Zhang
Photonics Research
  • Publication Date: May. 24, 2018
  • Vol. 6, Issue 6, 630 (2018)
Sensors
Sensitivity-enhanced surface plasmon resonance sensor utilizing a tungsten disulfide (WS2) nanosheets overlayer
Hao Wang, Hui Zhang, Jiangli Dong, Shiqi Hu, Wenguo Zhu, Wentao Qiu, Huihui Lu, Jianhui Yu, Heyuan Guan, Shecheng Gao, Zhaohui Li, Weiping Liu, Miao He, Jun Zhang, Zhe Chen, and Yunhan Luo
Tungsten disulfide (WS2), as a representative layered transition metal dichalcogenide (TMDC) material, possesses important potential for applications in highly sensitive sensors. Here, a sensitivity-enhanced surface plasmon resonance (SPR) sensor with a metal film modified by an overlayer of WS2 nanosheets is proposed and demonstrated. The SPR sensitivity is related to the thickness of the WS2 overlayer, which can be tailored by coating a WS2 ethanol suspension with different concentrations or by the number of times of repeated post-coating. Benefitting from its large surface area, high refractive index, and unique optoelectronic properties, the WS2 nanosheet overlayer coated on the gold film significantly improves the sensing sensitivity. The highest sensitivity (up to 2459.3 nm/RIU) in the experiment is achieved by coating the WS2 suspension once. Compared to the case without a WS2 overlayer, this result shows a sensitivity enhancement of 26.6%. The influence of the WS2 nanosheet overlayer on the sensing performance improvement is analyzed and discussed. Moreover, the proposed WS2 SPR sensor has a linear correlation coefficient of 99.76% in refractive index range of 1.333 to 1.360. Besides sensitivity enhancement, the WS2 nanosheet overlayer is able to show additional advantages, such as protection of metal film from oxidation, tunability of the resonance wavelength region, biocompatibility, capability of vapor, and gas sensing.
Photonics Research
  • Publication Date: Apr. 26, 2018
  • Vol. 6, Issue 6, 485 (2018)
Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide
Qingyang Du, Zhengqian Luo, Huikai Zhong, Yifei Zhang, Yizhong Huang, Tuanjie Du, Wei Zhang, Tian Gu, and Juejun Hu
On-chip spectroscopic sensors have attracted increasing attention for portable and field-deployable chemical detection applications. So far, these sensors largely rely on benchtop tunable lasers for spectroscopic interrogation. Large footprint and mechanical fragility of the sources, however, preclude compact sensing system integration. In this paper, we address the challenge through demonstrating, for the first time to our knowledge, a supercontinuum source integrated on-chip spectroscopic sensor, where we leverage nonlinear Ge22Sb18Se60 chalcogenide glass waveguides as a unified platform for both broadband supercontinuum generation and chemical detection. A home-built, palm-sized femtosecond laser centering at 1560 nm wavelength was used as the pumping source. Sensing capability of the system was validated through quantifying the optical absorption of chloroform solutions at 1695 nm. This work represents an important step towards realizing a miniaturized spectroscopic sensing system based on photonic chips.
Photonics Research
  • Publication Date: Apr. 26, 2018
  • Vol. 6, Issue 6, 506 (2018)
Silicon Photonics
Backcoupling manipulation in silicon ring resonators
Ang Li, and Wim Bogaerts
In this paper, we theoretically propose and experimentally demonstrate the manipulation of a novel degree of freedom in ring resonators, which is the coupling from the clockwise input to the counterclockwise propagating mode (and vice versa). We name this mechanism backcoupling, in contrast with the normal forward-coupling of a directional coupler. It is well known that internal reflections will cause peak splitting in a ring resonator. Our previous research demonstrated that the peak asymmetry will be strongly influenced by the backcoupling. Thus, it is worth manipulating the backcoupling in order to gain full control of a split resonance for the benefit of various resonance-splitting-based applications. While it is difficult to directly manipulate the backcoupling of a conventional directional coupler, here we design a circuit explicitly for manipulating the backcoupling. It can be potentially developed for applications such as single sideband filter, resonance splitting elimination, Fano resonance, and ultrahigh-Q and finesse.
Photonics Research
  • Publication Date: May. 24, 2018
  • Vol. 6, Issue 6, 620 (2018)
Ultrafast Optics
Chirp control of femtosecond-pulse scattering from drag-reducing surface-relief gratings
Juliane Eggert, Bjoern Bourdon, Stefan Nolte, Joerg Rischmueller, and Mirco Imlau
The role of chirp on the light–matter interaction of femto- and pico-second laser pulses with functional structured surfaces is studied using drag-reducing riblets as an example. The three-dimensional, periodic microstructure naturally gives rise to a mutual interplay of (i) reflection, (ii) scattering, and (iii) diffraction phenomena of incident coherent light. Furthermore, for femtosecond pulses, the structure induces (iv) an optical delay equivalent to a consecutive temporal delay of 230 fs in places of the pulse. These features enable studying experimentally and numerically the effect of tuning both pulse duration τ and spectral bandwidth Δω on the features of the wide-angle scattering pattern from the riblet structure. As a result, we discovered a significant breakdown of fringes in the scattering pattern with decreasing pulse duration and/or increasing spectral bandwidth. This unique type of chirp control is straightforwardly explained and verified by numerical modeling considering the spectral and temporal interaction between different segments within the scattered, linearly chirped pulse and the particular geometric features of the riblet structure. The visibility of the fringe pattern can be precisely adjusted, and the off-state is achieved using τ<230 fs or Δω>2.85×1013 rad/s.
Photonics Research
  • Publication Date: May. 02, 2018
  • Vol. 6, Issue 6, 542 (2018)
Ultrafast optical nonlinearity of blue-emitting perovskite nanocrystals
Junzi Li, Can Ren, Xin Qiu, Xiaodong Lin, Rui Chen, Cheng Yin, and Tingchao He
Perovskite nanocrystals (NCs) have strong nonlinear optical responses with a number of potential applications, ranging from upconverted blue-lasing to the tagging of specific cellular components in multicolor fluorescence microscopy. Here, we determine the one-photon linear absorption cross section of two kinds of blue-emitting perovskite NCs, i.e., CsPbCl3 and CsPb(Cl0.53Br0.47)3, by utilizing femtosecond transient absorption spectroscopy. The wavelength-dependent nonlinear refraction and two-photon absorption have been measured at wavelengths from 620 to 720 nm by performing Z-scan measurements. The nonlinear optical responses of CsPb(Cl0.53Br0.47)3 are much more pronounced than those of CsPbCl3 due to the larger structural destabilization of the former.
Photonics Research
  • Publication Date: May. 15, 2018
  • Vol. 6, Issue 6, 554 (2018)

About the Cover

Left: Schematic diagram of the proposed fiber; Right: spectrum profiles of pump pulses at propagation distances of 0, 5 and 100 cm from the top to the bottom, respectively. The pump pulses are 200-fs duration and 100-kW peak power at 1550 nm.