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In this paper, we design a one-dimensional (1D) parity-time-symmetric periodic ring optical waveguide network
(PTSPROWN) and investigate its extraordinary optical characteristics. It is found that quite different from tradi-
tional vacuum/dielectric optical waveguide networks, 1D PTSPROWN cannot produce a photonic ordinary
propagation mode, but can generate simultaneously two kinds of photonic nonpropagation modes: attenuation
propagation mode and gain propagation mode. It creates neither passband nor stopband and possesses no
photonic band structure. This makes 1D PTSPROWN possess richer spontaneous PT-symmetric breaking
points and causes interesting extremum spontaneous PT-symmetric breaking points to appear, where electromag-
netic waves can create ultrastrong extraordinary transmission, reflection, and localization, and the maximum can
arrive at 6.6556 × 1012 and is more than 7 orders of magnitude larger than the results reported previously.
1D PTSPROWN may possess potential in designing high-efficiency optical energy saver devices, optical
amplifiers, optical switches with ultrahigh monochromaticity, and so on. © 2018 Chinese Laser Press

OCIS codes: (230.7370) Waveguides; (160.4670) Optical materials; (160.3918) Metamaterials.
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1. INTRODUCTION

In the wake of photonic crystals and metamaterials, the parity-
time-symmetric (PT-symmetric) optical system is another kind
of new artificial structure to control and confine the propagation
of electromagnetic (EM) waves. Since it was proposed in 2007
[1], people have paid great attention to it [1–17]. It is well
known that eigenvalues of Hermitian operators in quantum me-
chanics are all real numbers, and the operators corresponding to
observable mechanical quantities should be Hermitian ones in
order to make their eigenvalues be real numbers. In 1998,
Bender et al. [18,19] found that for a PT-symmetric dynamic
system, when the imaginary part of the potential function is
smaller than some critical value, even if its Hamiltonian operator
is non-Hermitian, all the energy eigenvalues are still real num-
bers; only when the imaginary part of its potential function
is larger than this critical value do its energy eigenvalues
appear to be complex numbers. This critical value is called
the spontaneous PT-symmetric breaking point. In 2007,

El-Ganainy et al. [1] constructed PT-symmetric optical systems
by materials with even-function real part and odd-function
imaginary part refractive indices on the condition of paraxial
approximation. Subsequently, people have widely investigated
extraordinary optical features and phenomena in PT-symmetric
optical systems, such as new solitons [2,7,8,11,12], Bloch oscil-
lations [3,4], noncommutability [3,9], unidirectional invisibility
[5,9,10,13,14], dual behavior of PT-symmetric scattering [3,10],
2 × 2 spatial optical switches [6], and ultrastrong transmission
and reflection [9,15,16].

An optical waveguide network [20,21] is another kind of
new remarkable artificial structure to control and confine the
propagation of EM waves. Just like photonic crystals, an optical
waveguide network has a kind of photonic bandgap (PBG)
structure. Compared with the former, the structure symmetry
of the latter is much more flexible [20,22,23], and the phase
and amplitude measurements of the EM wave in the latter are
also much more convenient [20,23]. It is found that optical
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waveguide networks can produce rich photonic attenuation
mode [24], interesting comb-like optical transmission spectrum
[25,26], extreme wide PBG [22,27,28], ultrastrong photonic
localization [29–32], and so on.

Optical waveguide networks now studied are mainly com-
posed of dielectrics and/or materials with a single negative re-
fractive index. Now it is known that PT-symmetric waveguides
are quite different from the former and possess extraordinary
optical characteristics, so, if the former is replaced by the latter,
will the networks produce new photonic propagation modes
and then generate new extraordinary optical characteristics?
Investigations on these networks may deepen people’s knowl-
edge of PBG materials and PT-symmetric optical structures
and may be helpful for controlling and confining the propaga-
tion of EM waves.

In this paper, we design a one-dimensional (1D) PT-symmet-
ric periodic ring optical waveguide network (1D PTSPROWN)
by use of magnesium fluoride (MgF2) materials and investigate
the propagation of EM waves in this network. It is found that,
quite different from the PT-symmetric optical structures already
reported, in our designed 1DPTSPROWN, a photonic ordinary
propagation mode (OPM) cannot be generated; only two kinds
of special nonpropagation modes can be produced, which can
create new photonic mode distribution, extremum spontaneous
PT-symmetric breaking points, and ultrastrong extraordinary
photonic transmission, reflection, and photonic localization.
Our numerical results show that for either left- or right-incident
EM waves, the maximal photonic transmission, reflection, and
localization can all arrive at 6.6556 × 1012, which is 7 orders of
magnitude larger than the previous results. This interesting struc-
ture may possess potential applications for the design of efficient
photonic energy storage, extreme narrowband optical filters,
optical amplifiers, optical logic elements in photon computers,
and ultrasensitive optical switches with ultrahigh monochroma-
ticity, etc. On the other hand, the structure of our designed 1D
PTSPROWN is very simple, and the imaginary part of the
refractive index of the waveguide material is very small. It
may be realized conveniently in experiments.

This paper is organized as follows. In Section 2, we intro-
duce our designed 1D PTSPROWN and the main theory and
method for analytical deducing and numerical calculation.
In Section 3, we deduce the general network equation for a
three-material optical waveguide network. The analytical and
numerical results of the extraordinary optical properties and
the discussions on them are given in Section 4. Finally,
Section 5 is the summary of this paper.

2. MODEL AND THEORY

A. 1D PTSPROWN
The 1D PTSPROWN studied in this paper is shown in Fig. 1,
where the length for each waveguide segment is d . In order to
compare the calculations with experimental results, in
Subsection 4.B, we set the wavelength of the first extremum
spontaneous PT-symmetric breaking point near the communi-
cation wavelength λ � 1.550 μm by adjusting the length
parameter d. For this reason, in this paper we set
d � 11.3095 μm. In Fig. 1, the thin black solid lines at the
entrance and exit are all vacuum optical waveguide segments,

and the refractive index is n0 � 1. The thick red solid lines
in unit cells are PT-symmetric optical waveguide segments that
are made ofMgF2, and their complex conjugate refractive indices
along the length can be realized in two ways: doping gain and
loss quantum dots [15], or modulating the density of materials
[32]. The refractive indices of the three subwaveguides are,
respectively, 8<

:
n1 � nMgF2

− ιnb,
n2 � nMgF2

,
n3 � nMgF2

� ιnb,
(1)

and their length ratios are l 1 � l2 � l3 � 1
3.

For MgF2, it is reported that in the range of 43–1500 THz
(i.e., 0.20–7.00 μm), the dispersion equation satisfies [33]

n2MgF2
− 1 � 0.48755108λ2

λ2 − 0.043384082
� 0.39875031λ2

λ2 − 0.094614422

� 2.312035λ2

λ2 − 23.7936042
, (2)

and the dispersion curve is plotted in Fig. 2.

Fig. 1. Schematic of the 1D PTSPROWN, including three unit cells,
one entrance, and one exit, where E I, ER , and EO are the input, re-
flective, and output EM waves, respectively, and the length for each
waveguide segment is d . The thin black solid lines at the entrance
and exit are all vacuum optical waveguide segments. The thick red solid
lines in unit cells are PT-symmetric optical waveguide segments, where
the refractive indices of the three subwaveguides are, respectively, n1, n2,
and n3, and their length ratios are l1, l2, and l3, respectively.

Fig. 2. Dispersion curve ofMgF2 defined by Eq. (2), where the thick
red solid line expresses the range investigated in this paper; the thin black
dashed lines are all scaling lines, and the values are, respectively,
ν1 � 43 THz (λ1 � 7.00 μm), ν2 � 100 THz (λ2 � 3.0 μm), ν3 �
600 THz (λ3 � 0.5 μm), and ν4 � 1500 THz (λ4 � 0.2 μm).
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From Fig. 2, one can see that in the range of 100–1500 THz
(i.e., 0.2–3.0 μm), the dispersion effect is weak. In order to
reduce workload and the influence of dispersion effect on re-
sults, and at the same time in order to investigate the photonic
properties near the communication wavelength, only the EM
waves with the frequency (wavelength) in the range of 100–
600 THz (0.5–3.0 μm) are studied, which corresponds to
the dispersion curve of the thick red solid line in Fig. 2.

B. Generalized Floquet–Bloch Theorem
It is well known that the Floquet–Bloch theorem is used for
investigating lattice waves in a system with spatial translation
periodicity. However, in our designed optical waveguide net-
work, all the waveguide segments can be arbitrarily bent and
folded, and consequently, only topological translation periodic-
ity, but no spatial translation periodicity, exists. For this kind of
structure, recently we proposed a dimensionless generalized
Floquet–Bloch theorem [23], which can be expressed as

ψ ~K � ~N � ~T � � ψ ~K � ~N �eι ~K · ~T , (3)

where ~K is the structure Bloch wave vector, ~N is the node scaling
vector, and ~T is the structure translation vector. In this paper, we
use the generalized Floquet–Bloch theorem to deduce dispersion
relation, define photonic modes, and determine the distribution
of photonic modes.

C. Generalized Eigenfunction Method
In this paper, we use the generalized eigenfunction method [34]
to calculate transmissivity, reflectivity, and photonic localiza-
tion, where wave transfer equations are changed into a transfer
matrix, and transmission and reflection coefficients are
regarded as generalized wave functions.

3. THREE-MATERIAL NETWORK EQUATION

In the 1D PTSPROWN shown in Fig. 1, optical waveguides in
unit cells are PT-symmetric waveguide segments and are made
up of three kinds of materials. So, the reported one-material net-
work equation [23,35] and two-material network equation [26]
are not suitable. In this section, we deduce a three-material
network equation.

In a three-material network, EM waves satisfy the following
wave equation [35]:

∂2

∂x2
ψnm�x� � k2mψnm�x� � 0, (4)

where the wave vector km � 2πνnm∕c (m � 1,2, 3), ν is the
EM wave frequency, and c � 2.99792458 × 108 m∕s is the
speed of EM waves in vacuum.

For 1D waveguide segments, only the monomode propaga-
tion of EM waves needs to be considered. The wave function
between nodes i and j can be regarded as the following linear
combination of two opposite traveling plane waves:

ψ ij�x� �

8>>>>>><
>>>>>>:

ψn1�x� � a1eιk1x � b1e−ιk1x

�0 ≤ x ≤ l1d ij�,
ψn2�x� � a2eιk2x � b2e−ιk2x

�l1d ij ≤ x ≤ l 12d ij�,
ψn3�x� � a3eιk3x � b3e−ιk3x

�l12d ij ≤ x ≤ d ij�,

(5)

where l 12 � l 1 � l2. At the sites of x � l1d ij and l 12d ij, by
means of the continuities of the wave function and its
differential quotient, one can obtain that

8>>>>>>>>>>><
>>>>>>>>>>>:

a1eιk1 l1d ij � b1e−ιk1 l1d ij

� a2eιk2l 1d ij � b2e−ιk2 l 1d ij ,
a1k1eιk1 l1d ij − b1k1e−ιk1 l1d ij

� a2k2eιk2l 1d ij − b2k2e−ιk2 l 1d ij ,
a3eιk3 l12d ij � b3e−ιk3 l12d ij

� a2eιk2l 12d ij � b2e−ιk2 l 12d ij ,
a3k3eιk3 l12d ij − b3k3e−ιk3 l12d ij

� a2k2eιk2l 12d ij − b2k2e−ιk2 l12d ij :

(6)

By use of Eqs. (5) and (6), one can deduce that

ψ ij�x� �

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ψn1�x� � Ω1eιΠ1�Ω2eιΠ2
2k1

a2
� Ω1e−ιΠ1�Ω2e−ιΠ2

2k1
b2

�0 ≤ x ≤ l 1d ij�,
ψn2�x� � a2eιk2x � b2e−ιk2x

�l 1d ij ≤ x ≤ l 12d ij�,
ψn3�x� � Ξ1eιΘ1�Ξ2eιΘ2

2k3
a2

� Ξ1e−ιΘ1�Ξ2e−ιΘ2
2k3

b2
�l 12d ij ≤ x ≤ d ij�,

(7)

where
8>>>>>>>>>><
>>>>>>>>>>:

Ω1 � k1 � k2,
Ω2 � k1 − k2,
Π1 � k2l1d ij − k1l 1d ij � k1x,
Π2 � k2l1d ij � k1l 1d ij − k1x,
Ξ1 � k3 � k2,
Ξ2 � k3 − k2,
Θ1 � k2l12d ij − k3l 12d ij � k3x,
Θ2 � k2l12d ij � k3l 12d ij − k3x:

(8)

If ψ i and ψ j denote the wave functions at nodes i and j,
respectively, by use of the continuity of the wave functions,
one can obtain that

�
ψ ij�x�jx�0 � ψ i,
ψ ij�x�jx�d ij

� ψ j:
(9)

By means of Eqs. (7)–(9), one can obtain that
8<
:

Ω1eιϒ2�Ω2eιϒ1
2k1

a2 � Ω1e−ιϒ2�Ω2e−ιϒ1
2k1

b2 � ψ i ,
Ξ1eιϒ4�Ξ2eιϒ3

2k3
a2 � Ξ1e−ιϒ4�Ξ2e−ιϒ3

2k3
b2 � ψ j,

(10)

where
8>><
>>:

ϒ1 � k2l 1d ij � k1l1d ij,
ϒ2 � k2l 1d ij − k1l1d ij,
ϒ3 � k2l 12d ij − k3l3d ij,
ϒ4 � k2l 12d ij � k3l 3d ij:

(11)

By means of Eqs. (7), (8), (10), and (11), one can obtain that
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ψn1�x� � ψ iξ1
Ω1 cos�ϒ2 � k1x� � Ω2 cos�ϒ1 − k1x�P

α, β
ΩαΞβ�−1�α�β sin d ijZ α,β

− ψ iξ2
Ω1 sin�ϒ2 � k1x� �Ω2 sin�ϒ1 − k1x�P

α, β
ΩαΞβ�−1�α�β sin d ijZ α,β

−
k3
k1

ψ jξ3
Ω1 cos�ϒ2 � k1x� � Ω2 cos�ϒ1 − k1x�P

α, β
ΩαΞβ�−1�α�β sin d ijZ α,β

� k3
k1

ψ jξ4
Ω1 sin�ϒ2 � k1x� �Ω2 sin�ϒ1 − k1x�P

α, β
ΩαΞβ�−1�α�β sin d ijZ α,β

,

(12)

where
8>>>>>>>>>>>><
>>>>>>>>>>>>:

α, β � 1,2,
Z 1,1 � k1l 1 � k2l2 � k3l 3,
Z 2,1 � k1l 1 − k2l2 − k3l3,
Z 1,2 � k1l 1 � k2l2 − k3l 3,
Z 2,2 � k1l 1 − k2l2 � k3l 3,
ξ1 � Ξ2 sin ϒ3 � Ξ1 sin ϒ4,
ξ2 � Ξ2 cos ϒ3 � Ξ1 cos ϒ4,
ξ3 � Ω2 sin ϒ1 � Ω1 sin ϒ2,
ξ4 � Ω1 cos ϒ2 �Ω2 cos ϒ1:

(13)

At any node, the energy flux conservation gives

X
j

1

μω
Aijψ ij�x�

∂ψ ij�x�
∂x

����
x�0

� 0, (14)

where the summation is over all segments linked directly to
node i. Generally, the cross-sectional area Aij for each segment
is the same; the boundary conditions, Eqs. (9) and (14), yield

X
j

∂ψ ij�x�
∂x

����
x�0

� 0: (15)

In order to obtain the relationship between the wave func-
tions of nearest-neighbor nodes in the network systems, one
can deduce the following network equation of the three-
material multiconnected network by putting Eqs. (7), (8), (12),
and (13) into Eq. (15):

− ψ i

X
j

P
α,βΩαΞβ�−1�α�β cos d ijZ α,βP

α, β
ΩαΞβ�−1�α�β sin d ijZ α,β

�
X
j

ψ j
4k2k3P

α, β
ΩαΞβ�−1�α�β sin d ijZ α,β

� 0: (16)

In order to test the correctness of the three-material multi-
connected network equation, we compare Eq. (16) with the
reported one-material network equation [35], the vacuum op-
tical waveguide network equation [23], and the two-material
network equation [26]. When n1 ≠ n2 and n2 � n3, the
three-material network degenerates to a two-material system,
and Eq. (16) changes into

− ψ i

X
j

Ω1 cos d ijZ 11 − Ω2 cos d ijZ 21

Ω1 sin d ijZ 11 − Ω2 sin d ijZ 21

�
X
j
ψ j

2k2
Ω1 sin d ijZ 11 −Ω2 sin d ijZ 21

� 0: (17)

Obviously, when8>><
>>:

Ω1 � Φ,
Ω2 � −Γ,
d ijZ 11 � Π� Θ,
d ijZ 21 � Π − Θ,

(18)

our deduced two-material waveguide network equation,
Eq. (17), is exactly accordant with the reported one [26].
When n1 � n2 � n3, the three-material network degenerates
to a one-material system, and Eq. (16) changes into

−ψ i

X
j

cot kd ij �
X
j

ψ j csc kd ij � 0, (19)

where k � 2πνn∕c. Obviously, when�
d ij � l ij,
k � −ιZ ,

(20)

our deduced one-material waveguide network equation,
Eq. (19), is exactly accordant with the reported one [35]. In
this paper, we use the three-material multiconnected network
equation, Eq. (16), to investigate the extraordinary optical
characteristics of PT-symmetric optical waveguide networks.

4. EXTRAORDINARY OPTICAL PROPERTIES

A. Extraordinary Photonic Modes
From the generalized Floquet–Bloch theorem, one knows that
when EM waves propagate in the optical waveguide network
with topological translation periodicity, the only difference be-
tween the wave function in the N th unit cell and that in the

�N � T �th unit cell is a phase factor of eι ~K · ~T . When the
structure Bloch wave vector K is a real number, ~K · ~T is also
a real number. When EM waves propagate in this kind of
network, the amplitude of the wave function keeps constant,
though the phase of the wave function changes with a factor,

eι ~K · ~T . We call this kind of photonic mode OPM [24]. When
K � K a � ιK b �K b > 0� is a complex number, ι ~K · ~T �
−K bT � ιK aT . When EM waves propagate in this kind of
network, not only the phase of the wave function changes with
a factor, eιK aT , but also the amplitude of the wave function
attenuates with a factor, e−K bT . We call this kind of photonic
mode attenuation propagation mode (APM), which is one of
the nonpropagation modes. When K � K a − ιK b �K b > 0� is
a complex number, ι ~K · ~T � K bT � ιK aT . When EM waves
propagate in this kind of network, not only the phase of the
wave function changes with a factor, eιK aT , but also the ampli-
tude of the wave function gains with a factor, eK bT . We call this
kind of photonic mode gain propagation mode (GPM), which
is also one of the nonpropagation modes.

For 1D PTSPROWNs with infinite unit cells, based on
the generalized Floquet–Bloch theorem and the three-material
network equation, one can deduce the following dispersion
relation:
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cos K � f �ν�, (21)

where

f �ν� �
X
ij

P
α,βΩαΞβ�−1�α�β cos d ijZ α,βP

α, β
ΩαΞβ�−1�α�β sin d ijZ α,β

�
X
ij

4k2k3P
α, β

ΩαΞβ�−1�α�β sin d ijZ α,β
, (22)

and α, β � 1,2.
For 1D three-material ring optical waveguide networks

composed of vacuum and/or dielectric waveguides, where
the material refractive indices are all real, it is known from
Eq. (22) that the dispersion function f �ν� must be real. For
real f �ν� and jf �ν�j ≤ 1, from Eq. (21) one can deduce that
the structure Bloch wave vector K possesses real solutions, and
EM waves in this frequency range propagate as OPM and form
passbands. Consequently, large transmission is produced, and
the transmissivity does not decrease with the increasing number
of unit cells and generally satisfies 0.01 ≤ T ≤ 1.0. However,
for real f �ν� and jf �ν�j > 1, from Eq. (21) one can deduce
that the structure Bloch wave vector K possesses a pair of com-
plex conjugate solutions. From the aspect of mathematics, EM
waves in this frequency range will propagate as APM and GPM
simultaneously, but in the optical waveguide networks com-
posed of vacuum and/or dielectric waveguides, there exists
only an attenuation mechanism but no gain mechanism, and
consequently, from the aspect of physics, EM waves in this fre-
quency range will propagate only as APM and form stopbands.
Then very small transmission is produced, and the transmissiv-
ity decreases with the increasing number of unit cells and gen-
erally satisfies T < 0.01. It shows that in the optical waveguide
networks composed of vacuum and/or dielectric waveguides,
jf �ν�j � 1 is a critical point for adjusting photonic modes.

For our designed 1D PTSPROWN, where the refractive in-
dices of two kinds of materials are complex, one can deduce from
Eq. (22) that the dispersion function f �ν� keeps being complex
in the total range of frequency. For complex f �ν�, from Eq. (21)
one can see that the structure Bloch wave vector K possesses no
real solution, but a pair of complex conjugate ones. From the
aspect of mathematics, EM waves in this PT-symmetric network
will propagate as APM and GPM simultaneously. On the other
hand, in PT-symmetric optical waveguides, both attenuation
and gain mechanisms exist, and consequently, from the aspect
of physics, EM waves will propagate as APM and GPM simul-
taneously. It means that in this PT-symmetric network the struc-
ture Bloch wave vector K possesses no real solution but a pair of
complex conjugate ones, and then no matter whether the trans-
missivity decreases with the increasing number of unit cells and
whichever range the EM wave frequency is, the traditional pass-
bands and/or stopbands will not exist now.

In short, the photonic modes in PT-symmetric optical wave-
guide networks are quite different from those in vacuum and/or
dielectric optical waveguide networks. For the former, no OPM
exists, but APM and GPM exist simultaneously in the total
range of frequency; for the latter, no GPM in the total range
of frequency exists, but OPM and APM in some other
frequency range(s) exist. For the former, no passband and/or

stopband is formed, and then no traditional band structure ex-
ists; for the latter, passband and/or stopband can be formed, and
then a traditional band structure exists. The former can produce
extraordinary transmission, where transmissivity is much larger
than 1.0, but the latter can only generate ordinary transmission,
where transmissivity is equal to or smaller than 1.0.

Additionally, it has been reported that spontaneous PT-
symmetric breaking points are located at the boundary between
the photonic OPM and nonpropagation modes [1–3,7–10,36].
However, when EM waves propagate in our designed 1D
PTSPROWN, no OPM exists except two kinds of nonpropaga-
tion modes, APM and GPM, simultaneously, in the total range
of frequency, and they cannot be separated from each other any-
where and anytime. Consequently, spontaneous PT-symmetric
breaking points of our designed 1D PTSPROWN cannot be
determined by photonic APM and GPM. From Eq. (21),
one can see that when the absolute value of dispersion function
jf �ν�j is small, the imaginary part of the structure Bloch wave
vector K may also be small, and extraordinary transmissivity with
the value larger than 1.0 cannot be created. Only when jf �ν�j is
big enough can the imaginary part of K be very large and the
extraordinary transmissivity with the value larger than 1.0 be
generated. For this reason, just as with vacuum and/or dielectric
waveguide networks, we choose jf �ν�j � 1 to be the critical
value for adjusting photonic modes, define both APM and
GPM produced by the PT-symmetric waveguide network cor-
responding to jf �ν�j ≤ 1 as weak propagation modes (WPMs),
and define those produced by the PT-symmetric waveguide net-
work corresponding to jf �ν�j > 1 as strong propagation modes
(SPMs). On this condition, we define the spontaneous PT-
symmetric breaking points of our designed 1D PTSPROWN
as the imaginary part of the PT-symmetric materials, nb, located
between WPM and SPM.

B. Extremum Spontaneous PT-Symmetric Breaking
Points
According to the definitions in Subsection 4.A for photonic
WPM and SPM and spontaneous PT-symmetric breaking
points in 1D PTSPROWN, by using Eq. (22), we plot in Fig. 3
the distribution diagram of photonic modes for the EM waves
in the range of 100–600 THz (0.5–3.0 μm).

From Fig. 3, one can see that five extremum valleys
for the spontaneous PT-symmetric breaking points of
1D PTSPROWN exist. We call them extremum spontaneous
PT-symmetric breaking points, whose data are8>>>><

>>>>:

νI � 193.4158 THz, nbcosI � 2.181 × 10−8;
νII � 289.5226 THz, nbcosII � 2.776 × 10−6;
νIII � 385.4978 THz, nbcosIII � 2.190 × 10−8;
νIV � 481.2158 THz, nbcosIV � 2.462 × 10−8;
νV � 576.5832 THz, nbcosV � 4.562 × 10−6:

(23)

At these extremum points, jf �ν�j � 1 exists, and the
dispersion function f �ν� is continuous without derivative.
It makes photons create ultrastrong extraordinary transmission
and reflection.

C. Extraordinary Transmission and Reflection
In order to investigate the properties of transmission and
reflection of 1D PTSPROWN, we numerically calculate the
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transmissivity and reflectivity in the total frequency range of
Fig. 3. It is found that the transmissivity and reflectivity in
the pure white zone (WPM) or pure red zone (SPM) are gen-
erally smaller than those at the spontaneous PT-symmetric
breaking points; the former is usually smaller than 1.0, while
the latter is always bigger than 1.0. The transmissivity and
reflectivity at the spontaneous PT-symmetric breaking points
are much smaller than those at the extremum spontaneous
PT-symmetric breaking points; the former is generally smaller
than 105, while the latter’s maximum can arrive at 1012.

As an example, in Fig. 4 we plot the ultrastrong extraordinary
transmission and reflection at the first extremum spontaneous
PT-symmetric breaking point of the 1D PTSPROWN with
three unit cells, where red dashed and dotted lines and black
dotted lines express left- and right-incident results, respectively.

From Fig. 4, one can see that for 1D PTSPROWN,
(i) at the points of ν � 193.415781 THz and ν �
193.415790 THz, for both left- and right-incident EM waves,
and for both transmissivity and reflectivity, the maximums
can all arrive at 6.6556 × 1012, which is 7 orders of magnitude
larger than the previous results; obviously, the 1D
PTSPROWN shows ultrastrong extraordinary transmission
and reflection; (ii) at the point of ν � 193.415786 THz,
for both left- and right-incident EM waves, the minimal trans-
missivity can arrive at 6.6556 × 10−12; it means the 1D
PTSPROWN shows an ultrastrong PBG-like attenuation char-
acteristic; (iii) for both transmission and reflection spectra, the
left-incident curves do not coincide with the right-incident
ones; the 1D PTSPROWN shows typical noncommutability
of EM wave propagation.

Why can 1D PTSPROWN produce ultrastrong extraordi-
nary transmission and reflection? We think it is caused by the
extraordinary photonic modes and the coupling resonant effect
of gain and loss in this network. (i) First, it is known from the
analyses on the photonic modes in Subsection 4.A that in 1D
PTSPROWN, no OPM exists where the amplitude of the wave

function keeps constant with the increasing number of unit
cells, but two nonpropagation modes, APM and GPM, exist
simultaneously in the total range of frequency, where the am-
plitude of the wave function attenuates and gains, respectively,
with the increasing number of unit cells. These two kinds of
nonpropagation modes are different not only from the OPM,
but also from the nonpropagation modes produced by dielectric
waveguide networks. When they propagate in the 1D
PTSPROWN, neither passband nor stopband can be formed,
and consequently, the transmission and reflection spectra for
the 1D PTSPROWN are completely different from those of di-
electric waveguide networks. (ii) On the other hand, in order to
study the coupling resonant effect of gain and loss in PT-
symmetric networks, we change the 1D PTSPROWN into
1D ring optical waveguide networks composed of single-gain
and loss materials, respectively, and calculate their transmissivity
and reflectivity. In order to compare the results conveniently with
that of 1D PTSPROWN, we set the gain and loss materials in
these two networks to just be the materials of the gain and loss
unit cells of 1D PTSPROWN, i.e., at the communication
wavelength nGain � n1 � 1.3705 − 2.181 × 10−8ι and nLoss �
n3 � 1.3705� 2.181 × 10−8ι. From Fig. 4(a), one can see that
the transmissivity of the 1D ring optical waveguide network
composed of single-gain material (the thick blue dashed line)
is approximately 1.0001, and that of the 1D ring optical wave-
guide network composed of single-loss material (the thin green
dotted line) is approximately 0.9998. It means that the transmis-
sivity of the gain optical waveguide network is larger than 1.0,
which is indeed bigger than that of the dielectric optical
waveguide network, and is also extraordinary, but it is much
smaller than that of the maximum of 1D PTSPROWN, where
the latter arrives at the order of 1012. Similarly, the transmissivity
of the loss optical waveguide network is smaller than 1.0, but its

Fig. 4. Transmission and reflection spectra at the first extremum
spontaneous PT-symmetric breaking point of the 1D ring optical
waveguide network with three unit cells, where red dashed and dotted
lines and black dotted lines express left- and right-incident results of
PT-symmetric network, respectively; thick blue dashed lines denote
the results of pure gain-material network with the refractive index
n � 1.3705 − ι2.181 × 10−8; thin green dotted lines indicate the
results of pure loss-material network with the refractive index
n � 1.3705� ι2.181 × 10−8. (a) Transmission spectra; (b) reflection
spectra.

Fig. 3. Distribution diagram of photonic modes, where white and
red zones represent WPMs and SPMs, respectively. (a) Frequency
range corresponds to the thick red solid line in Fig. 2. (b) Enlarged
drawing of the zone for the first extremum spontaneous PT-symmetric
breaking point, whose location is near the communication wavelength,
λ � 1550 nm.
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attenuation amplitude is much bigger than that of the minimum
of 1D PTSPROWN, where the latter arrives at the order of
10−12. The reason is that in the 1D ring optical waveguide net-
work composed of single-gain/loss material, there only exists
single-gain/loss mechanism/effect but no coupling mechanism/
effect of gain and loss, and furthermore, we set the imaginary
part of the gain/loss material be very small (only 10−8 order),
so the single gain/loss effect is very weak. This means that in
PT-symmetric networks, the pure gain and loss effects of both
gain and loss materials on photons are all negligible and play
subordinate roles; they will neither cancel nor weaken each other,
but both couple and strengthen each other. The coupling of gain
and loss effects plays a primary role. The gain and loss materials
in each waveguide form a coupling resonant cavity and create a
strong coupling resonant effect on the photons of APM and
GPM and then produce sharp resonant peak and valley, whose
resonant frequencies are determined by the network structure.
On the other hand, we observe that the system response is non-
reciprocal; the mechanism behind this nonreciprocity is still
under investigation [37]. Because of the noncommutability of
EM wave propagation, the resonant peaks for left and right inci-
dence do not coincide with each other. (iii) Finally, compared with
reported PT-symmetric optical structures, photons propagating in
our designed 1D PTSPROWN will produce multiquantum co-
herent superposition; it strengthens the aforementioned coupling
resonant effect. Based on this property, one can set the imaginary
part of the PT-symmetric material to be very small. It will be
convenient for the design of experiments and may decrease
manufacturing costs.

D. Ultrastrong Photonic Localization
By means of generalized eigenfunction method [34] and
Eq. (5), we numerically calculate the intensity distribution
of photons in the 1D PTSPROWN. It is found that just as
transmissivity and reflectivity, photonic localizations in the
pure white zone (WPM) or pure red zone (SPM) are generally
smaller than those at the boundaries between white and red
zones (the spontaneous PT-symmetric breaking points); the
former is usually smaller than 1.0, while the latter is always
bigger than 1.0. The photonic localizations at the spontaneous
PT-symmetric breaking points are much smaller than those at
the extremum spontaneous PT-symmetric breaking points;
the former is generally smaller than 105, while the latter’s
maximum can arrive at 1012.

As an example, in Fig. 5 we plot the intensity map of the
photonic localization at the first extremum spontaneous PT-
symmetric breaking point of the 1D PTSPROWN with three
unit cells. The upper arm is symmetric to the lower arm in each
unit cell; the intensity distribution of EM waves in the former is
also all the same as that in the latter. In order to avoid repeti-
tion, i–d–j (i, j � 1,2, 3) in Fig. 5 expresses the upper or lower
arm waveguide segment between nodes i and j.

From Fig. 5, one can see that the intensity distributions in
the three unit cells are very similar to each other. At the res-
onant peak frequency, ν � 193.415781 THz, in the upper
or lower arm of each unit cell, EM waves create ultrastrong
photonic localizations at the center and the two terminals, re-
spectively, and the maximal intensities are all 6.6556 × 1012.
We think it is also caused by the extraordinary photonic modes

and the coupling resonant effect of gain and loss in this net-
work. Each waveguide segment is a coupling resonant cavity,
where EM waves form a standing-wave-like pattern.

Similarly, in Figs. 5(a)–5(c), at the resonant valley frequency,
ν � 193.415786 THz, in the upper or lower arm of each unit
cell, EM waves create ultraweak photonic localizations at the
center and the two terminals, respectively, and the minimal
intensities are all 6.6556 × 10−12. Coupling resonant effect
of gain and loss causes EM waves to form a standing-wave-like
pattern. The ultrastrong photonic localization indicates that
1D PTSPROWN may possess potential applications to the de-
sign of efficient photonic energy storage [26,27], ultrasensitive
optical switches [28], and high power superluminescence
diodes [29,30], and so on.

5. SUMMARY

In this paper, by use of the common material,MgF2, we design
an interesting 1D PTSPROWN and investigate the extraordi-
nary optical characteristics when EM waves propagate in this
network.

First of all, we obtain the network equation of the general
three-material optical waveguide network and then deeply in-
vestigate the photonic modes in 1D PTSPROWN based on
this network equation and the generalized Floquet–Bloch theo-
rem. It is found that 1D PTSPROWN is quite different from
vacuum and/or dielectric optical waveguide networks. (i) For
the former, no OPM exists, but APM and GPM exist simulta-
neously in the total range of frequency; for the latter, no GPM
in the total range of frequency exists, but OPM exists in some
frequency range(s) and APM exists in some other frequency
range(s). (ii) For the former, no passband and/or stopband is
formed, and then no traditional band structure exists; for
the latter, passband and/or stopband can be formed, and then
a traditional band structure exists.

Based on these properties, we resort to photonic APM and
GPM as WPM and SPM and define a new spontaneous
PT-symmetric breaking point, which is different from those
reported previously. We find that much richer spontaneous

Fig. 5. Intensity map of the photonic localization at the first
extremum spontaneous PT-symmetric breaking point of the 1D
PTSPROWN with three unit cells, where i–d–j (i, j � 1,2, 3) expresses
the upper or lower arm waveguide segment between nodes i and j,
and three frequencies are, respectively, ν1 � 193.415780 THz,
ν2 � 193.415787 THz, and ν3 � 193.415793 THz. (a)–(c) Three-
dimensional map; (d)–(f) two-dimensional map.
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PT-symmetric breaking points exist in our designed 1D
PTSPROWN; even extremum PT-symmetric breaking points
appear, where EM waves can generate extraordinary ultrastrong
transmission, reflection, and localization, and the values are 7
orders of magnitude larger than the previous results. We think
it is caused by the extraordinary photonic modes and the cou-
pling resonant effect of gain and loss in this network. Each
waveguide segment can be regarded as a coupling resonant
cavity, where EM waves form a standing-wave-like pattern at
the frequency of either the resonant peak or resonant valley.
These interesting characteristics indicate 1D PTSPROWN
may possess potential applications to the design of all-optical
devices, such as efficient photonic energy storage, optical
switches, and high-power superluminescence diodes [29,30].
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