• Photonics Research
  • Vol. 6, Issue 6, 579 (2018)
Yan Zhi1, Xiangbo Yang1、2、3、*, Jiaye Wu2, Shiping Du4, Peichao Cao1, Dongmei Deng2, and Chengyi Timon Liu3
Author Affiliations
  • 1MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
  • 2Guangzhou Key Laboratory for Special Fiber Photonic Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
  • 3School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China
  • 4Department of Data and Computer Science, Sun Yat-sen University, Guangzhou 510006, China
  • show less
    DOI: 10.1364/PRJ.6.000579 Cite this Article Set citation alerts
    Yan Zhi, Xiangbo Yang, Jiaye Wu, Shiping Du, Peichao Cao, Dongmei Deng, Chengyi Timon Liu. Extraordinary characteristics for one-dimensional parity-time-symmetric periodic ring optical waveguide networks[J]. Photonics Research, 2018, 6(6): 579 Copy Citation Text show less

    Abstract

    In this paper, we design a one-dimensional (1D) parity-time-symmetric periodic ring optical waveguide network (PTSPROWN) and investigate its extraordinary optical characteristics. It is found that quite different from traditional vacuum/dielectric optical waveguide networks, 1D PTSPROWN cannot produce a photonic ordinary propagation mode, but can generate simultaneously two kinds of photonic nonpropagation modes: attenuation propagation mode and gain propagation mode. It creates neither passband nor stopband and possesses no photonic band structure. This makes 1D PTSPROWN possess richer spontaneous PT-symmetric breaking points and causes interesting extremum spontaneous PT-symmetric breaking points to appear, where electromagnetic waves can create ultrastrong extraordinary transmission, reflection, and localization, and the maximum can arrive at 6.6556×1012 and is more than 7 orders of magnitude larger than the results reported previously. 1D PTSPROWN may possess potential in designing high-efficiency optical energy saver devices, optical amplifiers, optical switches with ultrahigh monochromaticity, and so on.
    {n1=nMgF2ιnb,n2=nMgF2,n3=nMgF2+ιnb,(1)

    View in Article

    nMgF221=0.48755108λ2λ20.043384082+0.39875031λ2λ20.094614422+2.312035λ2λ223.7936042,(2)

    View in Article

    ψK(N+T)=ψK(N)eιK·T,(3)

    View in Article

    2x2ψnm(x)+km2ψnm(x)=0,(4)

    View in Article

    ψij(x)={ψn1(x)=a1eιk1x+b1eιk1x(0xl1dij),ψn2(x)=a2eιk2x+b2eιk2x(l1dijxl12dij),ψn3(x)=a3eιk3x+b3eιk3x(l12dijxdij),(5)

    View in Article

    {a1eιk1l1dij+b1eιk1l1dij=a2eιk2l1dij+b2eιk2l1dij,a1k1eιk1l1dijb1k1eιk1l1dij=a2k2eιk2l1dijb2k2eιk2l1dij,a3eιk3l12dij+b3eιk3l12dij=a2eιk2l12dij+b2eιk2l12dij,a3k3eιk3l12dijb3k3eιk3l12dij=a2k2eιk2l12dijb2k2eιk2l12dij.(6)

    View in Article

    ψij(x)={ψn1(x)=Ω1eιΠ1+Ω2eιΠ22k1a2+Ω1eιΠ1+Ω2eιΠ22k1b2(0xl1dij),ψn2(x)=a2eιk2x+b2eιk2x(l1dijxl12dij),ψn3(x)=Ξ1eιΘ1+Ξ2eιΘ22k3a2+Ξ1eιΘ1+Ξ2eιΘ22k3b2(l12dijxdij),(7)

    View in Article

    {Ω1=k1+k2,Ω2=k1k2,Π1=k2l1dijk1l1dij+k1x,Π2=k2l1dij+k1l1dijk1x,Ξ1=k3+k2,Ξ2=k3k2,Θ1=k2l12dijk3l12dij+k3x,Θ2=k2l12dij+k3l12dijk3x.(8)

    View in Article

    {ψij(x)|x=0=ψi,ψij(x)|x=dij=ψj.(9)

    View in Article

    {Ω1eιϒ2+Ω2eιϒ12k1a2+Ω1eιϒ2+Ω2eιϒ12k1b2=ψi,Ξ1eιϒ4+Ξ2eιϒ32k3a2+Ξ1eιϒ4+Ξ2eιϒ32k3b2=ψj,(10)

    View in Article

    {ϒ1=k2l1dij+k1l1dij,ϒ2=k2l1dijk1l1dij,ϒ3=k2l12dijk3l3dij,ϒ4=k2l12dij+k3l3dij.(11)

    View in Article

    ψn1(x)=ψiξ1Ω1cos(ϒ2+k1x)+Ω2cos(ϒ1k1x)α,βΩαΞβ(1)α+βsindijZα,βψiξ2Ω1sin(ϒ2+k1x)+Ω2sin(ϒ1k1x)α,βΩαΞβ(1)α+βsindijZα,βk3k1ψjξ3Ω1cos(ϒ2+k1x)+Ω2cos(ϒ1k1x)α,βΩαΞβ(1)α+βsindijZα,β+k3k1ψjξ4Ω1sin(ϒ2+k1x)+Ω2sin(ϒ1k1x)α,βΩαΞβ(1)α+βsindijZα,β,(12)

    View in Article

    {α,β=1,2,Z1,1=k1l1+k2l2+k3l3,Z2,1=k1l1k2l2k3l3,Z1,2=k1l1+k2l2k3l3,Z2,2=k1l1k2l2+k3l3,ξ1=Ξ2sinϒ3+Ξ1sinϒ4,ξ2=Ξ2cosϒ3+Ξ1cosϒ4,ξ3=Ω2sinϒ1+Ω1sinϒ2,ξ4=Ω1cosϒ2+Ω2cosϒ1.(13)

    View in Article

    j1μωAijψij(x)ψij(x)x|x=0=0,(14)

    View in Article

    jψij(x)x|x=0=0.(15)

    View in Article

    ψijα,βΩαΞβ(1)α+βcosdijZα,βα,βΩαΞβ(1)α+βsindijZα,β+jψj4k2k3α,βΩαΞβ(1)α+βsindijZα,β=0.(16)

    View in Article

    ψijΩ1cosdijZ11Ω2cosdijZ21Ω1sindijZ11Ω2sindijZ21+jψj2k2Ω1sindijZ11Ω2sindijZ21=0.(17)

    View in Article

    {Ω1=ϕ,Ω2=Γ,dijZ11=Π+Θ,dijZ21=ΠΘ,(18)

    View in Article

    ψijcotkdij+jψjcsckdij=0,(19)

    View in Article

    {dij=lij,k=ιZ,(20)

    View in Article

    cosK=f(ν),(21)

    View in Article

    f(ν)=ijα,βΩαΞβ(1)α+βcosdijZα,βα,βΩαΞβ(1)α+βsindijZα,β+ij4k2k3α,βΩαΞβ(1)α+βsindijZα,β,(22)

    View in Article

    {νI=193.4158  THz,nbcosI=2.181×108;νII=289.5226  THz,nbcosII=2.776×106;νIII=385.4978  THz,nbcosIII=2.190×108;νIV=481.2158  THz,nbcosIV=2.462×108;νV=576.5832  THz,nbcosV=4.562×106.(23)

    View in Article

    Yan Zhi, Xiangbo Yang, Jiaye Wu, Shiping Du, Peichao Cao, Dongmei Deng, Chengyi Timon Liu. Extraordinary characteristics for one-dimensional parity-time-symmetric periodic ring optical waveguide networks[J]. Photonics Research, 2018, 6(6): 579
    Download Citation