• Journal of Infrared and Millimeter Waves
  • Vol. 41, Issue 2, 420 (2022)
Li-Jie LIU1、*, You-Wen ZHAO1、2, Yong HUANG3, Yu ZHAO3, Jun WANG1, Ying-Li WANG1, Gui-Ying SHEN1, and Hui XIE1
Author Affiliations
  • 1Key Laboratory of Semiconductor Materials Science,Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China
  • 2College of Materials Science and Opto-electronic Technology,University of Chinese Academy of Sciences,Beijing 100049,China
  • 3Key Lab of Nanodevices and Applications,Suzhou Institute of Nano-Tech and Nano-Bionics,Chinese Academy of Sciences,Suzhou 215123,China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2022.02.006 Cite this Article
    Li-Jie LIU, You-Wen ZHAO, Yong HUANG, Yu ZHAO, Jun WANG, Ying-Li WANG, Gui-Ying SHEN, Hui XIE. Preparation of epi-ready InAs substrate surface for InAs/GaSb superlattice infrared detectors grown by MOCVD[J]. Journal of Infrared and Millimeter Waves, 2022, 41(2): 420 Copy Citation Text show less
    References

    [1] O Oda. Compound semiconductor bulk materials and characterizations. world scientific, 331(2007).

    [2] D D Ning, Y N Chen, X K Li et al. Research on the photoluminescence of spectral broadening by rapid thermal annealing on InAs/GaAs quantum dots. J. Semicond., 41, 122101(2020).

    [3] H Kroemer. The 6.1 family (InAs, GaSb, AlSb) and its heterostructures: A selective review. Physica E Low-Dimensional Systems and Nanostructures, 20, 196-203(2004).

    [4] H J Lee, S Y Ko, Y H Kim et al. Strain-induced the dark current characteristics in InAs/GaSb type-II superlattice for mid-wave detector. J. Semicond., 41, 062302(2020).

    [5] T Yu, S M Liu, J C Zhang et al. InAs-based interband cascade lasers at 4.0 μm operating at room temperature. J. Semicond., 39, 114003(2018).

    [6] K Reinhardt. Handbook of Silicon Wafer Cleaning Technology, 2nd Edition. /Handbook of silicon wafer cleaning technology.

    [7] J S Song, Y C Choi, S H Seo et al. Wet chemical cleaning process of GaAs substrate for ready-to-use. Journal of Crystal Growth, 264, 98-103(2004).

    [8] Y Sun, Z Liu, F Machuca et al. Optimized cleaning method for producing device quality InP(100) surfaces. Journal of Applied Physics, 97, 238-L667(2005).

    [9] A Guivarc’h, H L’Haridon, G Pelous et al. Chemical cleaning of InP surfaces: Oxide composition and electrical properties. Journal of Applied Physics, 55, 1139-1148(1984).

    [10] Z Liu, Y Sun, F Machuca et al. Optimization and characterization of III–V surface cleaning. Journal of Vacuum ence & Technology B Microelectronics & Nanometer Structures, 21, 184-187(2003).

    [11] T V L'Vova, I V Sedova, M S Dunaevski et al. Sulfide passivation of InAs(100) substrates in Na2S solutions. Physics of the Solid State, 51, 1114-1120(2009).

    [12] M Losurdo, M Giangregorio et al. InAs(100) surfaces cleaning by an As-free low-temperature 100\\u00b0C treatment. Journal of The Electrochemical Society, 156, H263(2009).

    [13] D H Van Dorp, S Arnauts, F Holsteyns et al. Wet-Chemical Approaches for Atomic Layer Etching of Semiconductors: Surface Chemistry, Oxide Removal and Reoxidation of InAs (100). Ecs Journal of Solid State Science & Technology, 4, N5061-N5066(2015).

    [14] L Yang, B M Tan, Y L Liu et al. Optimization of cleaning process parameters to remove abrasive particles in post-Cu CMP cleaning. J. Semicond., 39, 126002(2018).

    [15] J Yang, W Lu, M L Duan et al. VGF growth of high quality InAs single crystals with low dislocation density. Journal of Crystal Growth, 531, 125350(2019).

    [16] G Shen, Y Zhao, J Sun et al. A comparison of defects between InAs single crystals grown by LEC and VGF methods. Journal of Electronic Materials, 49, 5104-5109(2020).

    [17] X Lu, Y Zhao, W Sun et al. Lattice perfection of GaSb and InAs single crystal substrate. Pan Tao Ti Hsueh Pao/Chinese Journal of Semiconductors, 28, 163-166(2007).

    [18] J Sun, G Y Shen, H Xie et al. Wet etching generation of dislocation pits with clear facets in LEC-InAs single crystals. Journal of Crystal Growth, 526, 125237(2019).

    [19] K A Reinhardt. Handbook of silicon wafer cleaning technology. 2018 Elsevier Inc. Applied science publishers.

    [20] Jia WU, Zhi-cheng XU, JX Chen et al. Wet etching for InAs-based InAs/Ga(As)Sb superlattice long wavelength infrared detectors. Journal of Infrared and Millimeter Waves, 38, 549-553(2019).

    [21] F Liu, L D Zhang, H Liu et al. Characterization study of native oxides on GaAs(100) surface by XPS(2013).

    [22] Y Teng, Y Zhao, Q H Wu et al. High performance long-wavelength InAs/GaSb superlattice detectors grown by MOCVD. IEEE Photonic Technology Letters, 31, 185-188(2019).

    Li-Jie LIU, You-Wen ZHAO, Yong HUANG, Yu ZHAO, Jun WANG, Ying-Li WANG, Gui-Ying SHEN, Hui XIE. Preparation of epi-ready InAs substrate surface for InAs/GaSb superlattice infrared detectors grown by MOCVD[J]. Journal of Infrared and Millimeter Waves, 2022, 41(2): 420
    Download Citation