• Journal of Semiconductors
  • Vol. 40, Issue 6, 061003 (2019)
Hongtao Ren1、2, Yachao Liu1, Lei Zhang1, and Kai Liu2
Author Affiliations
  • 1MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi’an Jiaotong University, Xi’an 710049, China
  • 2State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
  • show less
    DOI: 10.1088/1674-4926/40/6/061003 Cite this Article
    Hongtao Ren, Yachao Liu, Lei Zhang, Kai Liu. Synthesis, properties, and applications of large-scale two-dimensional materials by polymer-assisted deposition[J]. Journal of Semiconductors, 2019, 40(6): 061003 Copy Citation Text show less
    References

    [1] Q X Jia, T M McCleskey, A K Burrell et al. Polymer-assisted deposition of metal-oxide films. Nat Mater, 3, 529(2004).

    [2] Q Feng, N Mao, J Wu et al. Growth of MoS2(1–x)Se2x (x = 0.41–1.00) monolayer alloys with controlled morphology by physical vapor deposition. ACS Nano, 9, 7450(2015).

    [3] Q Feng, Y Zhu, J Hong et al. Growth of large-area 2D MoS2(1–x)- Se2x semiconductor alloys. Adv Mater, 26, 2648(2014).

    [4] J Hou, X Wang, D Fu et al. Modulating photoluminescence of monolayer molybdenum disulfide by metal-insulator phase transition in active substrates. Small, 12, 3976(2016).

    [5] K Kang, S Xie, L Huang et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature, 520, 656(2015).

    [6] D Dumcenco, D Ovchinnikov, K Marinov et al. Large-area epitaxial monolayer MoS2. ACS Nano, 9, 4611(2015).

    [7] V Kochat, A Apte, J A Hachtel et al. Re doping in 2D transition metal dichalcogenides as a new route to tailor structural phases and induced magnetism. Adv Mater, 29, 1703754(2017).

    [8] P Shukla, Y Lin, E M Minogue et al. Polymer assisted deposition (PAD) of thin metal films: A new technique to the preparation of metal oxides and reduced metal films. Actinides 2005-Basic Science, Applications and Technology, 893(2006).

    [9] Y Cao, X Dai, K Zhang et al. One-step aqueous solution route toward depositing transparent carbon film onto different quartize substrate. Mater Lett, 185, 135(2016).

    [10] E Bauer, A H Mueller, I Usov et al. Chemical solution route to conformal phosphor coatings on nanostructures. Adv Mater, 20, 4704(2008).

    [11] H Luo, H Wang, Z Bi et al. Highly conductive films of layered ternary transition-metal nitrides. Angew Chem Int Edit, 48, 1490(2009).

    [12] K S Novoselov, A K Geim, S V Morozov et al. Electric field effect in atomically thin carbon films. Science, 306, 666(2004).

    [13] K Liu, J Wu. Mechanical properties of two-dimensional materials and heterostructures. J Mater Res, 31, 832(2015).

    [14] Y Sun, R Wang, K Liu. Substrate induced changes in atomically thin 2-dimensional semiconductors: fundamentals, engineering, and applications. Appl Phys Rev, 4, 011301(2017).

    [15] Z Yuan, J Hou, K Liu. Interfacing 2D semiconductors with functional oxides: fundamentals, properties, and applications. Crystals, 7, 265(2017).

    [16] H Ren, Z Xiong, E Wang et al. Watching dynamic self-assembly of web buckles in strained MoS2 thin films. ACS Nano, 13, 3106(2019).

    [17] Y Sun, K Liu. Strain engineering in functional 2-dimensional materials. J Appl Phys, 125, 082402(2019).

    [18] Y Sun, J Pan, Z Zhang et al. Elastic properties and fracture behaviors of biaxially deformed, polymorphic MoTe2. Nano Lett, 19, 761(2019).

    [19] X Wang, W Fan, Z Fan et al. Substrate modified thermal stability of mono- and few-layer MoS2. Nanoscale, 10, 3540(2018).

    [20] S Hong, D Fu, J Hou et al. Robust photoluminescence energy of MoS2/graphene heterostructure against electron irradiation. Sci China Mater, 61, 1351(2018).

    [21] Y Lin, J Xie, H Wang et al. Green luminescent zinc oxide films prepared by polymer-assisted deposition with rapid thermal process. Thin Solid Films, 492, 101(2005).

    [22] H Ren, G Xiang, G Gu et al. Zinc vacancy-induced room-temperature ferromagnetism in undoped ZnO thin films. J Nanomater, 6, 295358(2012).

    [23] H Ren, G Xiang, G Gu et al. Enhancement of ferromagnetism of ZnO:Co nanocrystals by post-annealing treatment: The role of oxygen interstitials and zinc vacancies. Mater Lett, 122, 256(2014).

    [24] H Ren, G Xiang, J Luo et al. Direct catalyst-free self-assembly of large area of horizontal ferromagnetic ZnO nanowire arrays. Mater Lett, 234, 384(2019).

    [25] H Luo, Y Lin, H Wang et al. Epitaxial GaN thin films prepared by polymer-assisted deposition. J Phys Chem C, 112, 20535(2008).

    [26] G Zou, M Jain, H Zhou et al. Ultrathin epitaxial superconducting niobium nitride films grown by a chemical solution technique. Chem Commun, 6022(2008).

    [27] H Luo, H Wang, Z Bi et al. Epitaxial ternary nitride thin films prepared by a chemical solution method. J Am Chem Soc, 130, 15224(2008).

    [28] H Luo, Y Lin, H Wang et al. A chemical solution approach to epitaxial metal nitride thin films. Adv Mater, 21, 193(2009).

    [29] H Luo, G Zou, H Wang et al. Controlling crystal structure and oxidation state in molybdenum nitrides through epitaxial stabilization. J Phys Chem C, 115, 17880(2011).

    [30] Y Zhang, N Haberkorn, F Ronning et al. Epitaxial superconducting delta-MoN films grown by a chemical solution method. J Am Chem Soc, 133, 20735(2011).

    [31] N Haberkorn, Y Y Zhang, J Kim et al. Upper critical magnetic field and vortex-free state in very thin epitaxial delta-MoN films grown by polymer-assisted deposition. Supercond Sci Tech, 26, 105023(2013).

    [32] T S Pan, Y Zhang, J Huang et al. Particle size effect on thermal conductivity of AlN films with embedded diamond particles. Appl Phys A, 114, 973(2014).

    [33] G Zou, H Wang, N Mara et al. Chemical solution deposition of epitaxial carbide films. J Am Chem Soc, 132, 2516(2010).

    [34] G Zou, H Luo, Y Zhang et al. A chemical solution approach for superconducting and hard epitaxial NbC film. Chem Commun, 46, 7837(2010).

    [35] Q Yi, X Dai, J Zhao et al. Enhanced mechanical strength and electrical conductivity of carbon-nanotube/TiC hybrid fibers. Nanoscale, 5, 6923(2013).

    [36] G F Zou, H M Luo, F Ronning et al. Facile chemical solution deposition of high-mobility epitaxial germanium films on silicon. Angew Chem Int Edit, 49, 1782(2010).

    [37] X Dai, J Wu, Z Qian et al. Ultra-smooth glassy graphene thin films for flexible transparent circuits. Sci Adv, 2, e1601574(2016).

    [38] H Xu, X Han, X Dai et al. High detectivity and transparent few-layer MoS2/glassy-graphene heterostructure photodetectors. Adv Mater, 30, e1706561(2018).

    [39] H Yang, A Giri, S Moon et al. Highly scalable synthesis of MoS2 thin films with precise thickness control via polymer-assisted deposition. Chem Mater, 29, 5772(2017).

    [40] J T Zhu, J Wu, Y H Sun et al. Thickness-dependent bandgap tunable molybdenum disulfide films for optoelectronics. Rsc Adv, 6, 110604(2016).

    [41] Y Lin, H Wang, M E Hawley et al. Epitaxial growth of Eu2O3 thin films on LaAlO3 substrates by polymer-assisted deposition. Appl Phys Lett, 85, 3426(2004).

    [42] M A Garcia, M N Ali, T Parsons-Moss et al. Metal oxide films produced by polymer-assisted deposition (PAD) for nuclear science applications. Thin Solid Films, 516, 6261(2008).

    [43] M N Ali, M A Garcia, T Parsons-Moss et al. Polymer-assisted deposition of homogeneous metal oxide films to produce nuclear targets. Nat Protoc, 5, 1440(2010).

    [44] M A Garcia, M N Ali, N N Chang et al. Metal oxide targets produced by the polymer-assisted deposition method. Nucl Instrum Meth A, 613, 396(2010).

    [45] M Jain, P Shukla, Y Li et al. Manipulating magnetoresistance near room temperature in La0.67Sr0.33MnO3/La0.67Ca0.33MnO3 films prepared by polymer assisted deposition. Adv Mater, 18, 2695(2006).

    [46] T M McCleskey, E Bauer, Q Jia et al. Optical band gap of NpO2 and PuO2 from optical absorbance of epitaxial films. J Appl Phys, 113, 013515(2013).

    [47] X D Wen, M W Loeble, E R Batista et al. Electronic structure and O K-edge XAS spectroscopy of U3O8. J Electron Spectrosc, 194, 81(2014).

    [48] M Jain, Y Li, M F Hundley et al. Magnetoresistance in polymer-assisted deposited Sr- and Ca-doped lanthanum manganite films. Appl Phys Lett, 88, 232510(2006).

    [49] H M Luo, M Jain, S A Baily et al. Structural and ferromagnetic properties of epitaxial SrRuO3 thin films obtained by polymer-assisted deposition. J Phys Chem B, 111, 7497(2007).

    [50] M Jain, Y Lin, P Shukla et al. Ferroic metal-oxide films grown by polymer assisted deposition. Thin Solid Films, 515, 6411(2007).

    [51] H Luo, H Yang, S A Bally et al. Self-assembled epitaxial nanocomposite BaTiO3–NiFe2O4 films prepared by polymer-assisted deposition. J Am Chem Soc, 129, 14132(2007).

    [52] M Jain, E Bauer, Y Lin et al. BaTiO3-related ferroelectric thin fflms by polymer assisted deposition. Integr Ferroelectr, 100, 132(2008).

    [53] I Lucas, J M Vila-Fungueirino, P Jimenez-Cavero et al. Tunnel conduction in epitaxial bilayers of ferromagnetic LaCoO3/La2/3Sr1/3MnO3 deposited by a chemical solution method. ACS Appl Mater Inter, 6, 21279(2014).

    [54] Q Yi, H Wang, S Cong et al. Self-cleaning glass of photocatalytic anatase TiO2@carbon nanotubes thin film by polymer-assisted approach. Nanoscale Res Lett, 11, 457(2016).

    [55] P Shukla, E M Minogue, T M McCleskey et al. Conformal coating of nanoscale features of microporous AnodiscTM membranes with zirconium and titanium oxides. Chem Commun, 847(2006).

    [56] E S Gillman, D Costello, M Moreno et al. Polymer-assisted conformal coating of TiO2 thin films. J Appl Phys, 108, 044310(2010).

    [57] Y Lin, B Zeng, Y Ji et al. Nucleation dynamics of nanostructural TiO2 films with controllable phases on (001) LaAlO3. Nanotechnology, 25, 014014(2014).

    [58] Q H Yi, S Cong, H Wang et al. High-stability Ti4+ precursor for the TiO2 compact layer of dye-sensitized solar cells. Appl Surf Sci, 356, 587(2015).

    [59] Y Ji, Y Zhang, M Gao et al. Role of microstructures on the M1–M2 phase transition in epitaxial VO2 thin films. Sci Rep-UK, 4, 4854(2014).

    [60] Y Ji, Y Zhang, M Gao et al. Growth and physical properties of vanadium oxide thin films with controllable phases. MRS Proceedings, 1547, 21(2013).

    [61] F Yue, W Huang, Q Shi et al. Phase transition properties of vanadium oxide films deposited by polymer-assisted deposition. J Sol-Gel Sci Techn, 72, 565(2014).

    [62] E Breckenfeld, H Kim, E P Gorzkowski et al. Laser-processing of VO2 thin films synthesized by polymer-assisted-deposition. Appl Surf Sci, 397, 152(2017).

    [63] M Gao, Z Qi, C Lu et al. Interplay between extra charge injection and lattice evolution in VO2/CH3NH3 PbI3 heterostructure. Phys Status Solidi R, 1700416(2018).

    [64] W Liang, M Gao, C Lu et al. Enhanced metal-insulator transition performance in scalable vanadium dioxide thin films prepared using a moisture-assisted chemical solution approach. ACS Appl Mater Inter, 10, 8341(2018).

    [65] Y Lin, J S Lee, H Wang et al. Structural and dielectric properties of epitaxial Ba1−xSrxTiO3 films grown on LaAlO3 substrates by polymer-assisted deposition. Appl Phys Lett, 85, 5007(2004).

    [66] M Jain, E Bauer, F Ronning et al. Mixed-valence perovskite thin films by polymer-assisted deposition. J Am Ceram Soc, 91, 1858(2008).

    [67] G Yao, Y Ji, W Liang et al. Influence of the vicinal surface on the anisotropic dielectric properties of highly epitaxial Ba0.7Sr0.3TiO3 thin films. Nanoscale, 9, 3068(2017).

    [68] H Luo, M Jain, T M McCleskey et al. Optical and structural properties of single phase epitaxial p-type transparent oxide thin films. Adv Mater, 19, 3604(2007).

    [69] H Luo, A H Mueller, T M McCleskey et al. Structural and photoelectrochemical properties of BiVO4 thin films. J Phys Chem C, 112, 6099(2008).

    [70] Y Xu, G Chen, E Fu et al. Nickel substituted LiMn2O4 cathode with durable high-rate capability for Li-ion batteries. Rsc Adv, 3, 18441(2013).

    [71] C Z Yuan, J Y Li, L R Hou et al. Polymer-assisted synthesis of a 3D hierarchical porous network-like spinel NiCo2O4 framework towards high-performance electrochemical capacitors. J Mater Chem A, 1, 11145(2013).

    [72] R B Mos, T Jr Petrisor, M Nasui et al. Enhanced structural and morphological properties of Gd-doped CeO2 thin films obtained by polymer-assisted deposition. Mater Lett, 124, 306(2014).

    [73] Y H Chuai, H Z Shen, Y Li et al. Epitaxial growth of highly infrared-transparent and conductive CuScO2 thin film by polymer-assisted-deposition method. Rsc Adv, 5, 49301(2015).

    [74] Y Lin, D Y Feng, M Gao et al. Reducing dielectric loss in CaCu3Ti4O12 thin films by high-pressure oxygen annealing. J Mater Chem C, 3, 3438(2015).

    [75] M Gao, D Feng, G Yao et al. Chemical and mechanical strains tuned dielectric properties in Zr-doped CaCu3Ti4O12 highly epitaxial thin films. Rsc Adv, 5, 92958(2015).

    [76] C Xie, L Shi, S Zhou et al. Structural characteristics, magnetic properties of Re2NiMnO6 (Re = La, Pr, Nd, Sm, Y) thin films on (001) LaAlO3 by simple polymer assisted deposition. Surf Coat Tech, 277, 222(2015).

    [77] D Yao, L Shi, S Zhou et al. Tuning the metal–insulator transition via epitaxial strain and Co doping in NdNiO3 thin films grown by polymer-assisted deposition. J Appl Phys, 119, 035303(2016).

    [78] Y Chuai, X Wang, C Zheng et al. Highly infrared-transparent and p-type conductive CuSc(1–x)Sn(x)O2 thin films and a p-CuScO2: Sn/n-ZnO heterojunction fabricated by the polymer-assisted deposition method. Rsc Adv, 6, 31726(2016).

    [79] M Lei, Y Zhang, Y Zhao. Coating conditions of SCO single buffer layer via Slot-Die technique. IEEE T Appl Supercon, 26, 1(2016).

    [80] I Lucas, P Jiménez-Cavero, J M Vila-Fungueiriño et al. Chemical solution synthesis and ferromagnetic resonance of epitaxial thin films of yttrium iron garnet. Phys Rev Mater, 1, 074407(2017).

    [81] B L Scott, J J Joyce, T D Durakiewicz et al. High quality epitaxial thin films of actinide oxides, carbides, and nitrides: Advancing understanding of electronic structure of f-element materials. Coordin Chem Rev, 266, 137(2014).

    [82] R E Jilek, E Bauer, A K Burrell et al. Preparation of epitaxial uranium dicarbide thin films by polymer-assisted deposition. Chem Mater, 25, 4373(2013).

    [83] L Elbaz, C R Kreller, N J Henson et al. Electrocatalysis of oxygen reduction with platinum supported on molybdenum carbide-carbon composite. J Electroanal Chem, 720, 34(2014).

    [84] R Cobas, S Muñoz-Perez, J M Cadogan et al. Magnetoresistance in epitaxial thin films of La0.85Ag0.15MnO3 produced by polymer assisted deposition. Appl Phys Lett, 99, 083113(2011).

    [85] Y Y Kim, J S Hwang, J K Kim et al. Electrical and optical properties of hydrogen plasma treated molybdenum doped indium oxide films synthesized by polymer-assisted deposition method. Ceram Int, 43, S506(2017).

    [86] Q Yi, J Wu, J Zhao et al. Tuning bandgap of p-type Cu2Zn(Sn, Ge)(S, Se)4 semiconductor thin films via aqueous polymer-assisted deposition. ACS Appl Mater Inter, 9, 1602(2017).

    [87] S J Hong, H Jun, J S Lee. Nanocrystalline WO3 film with high photo-electrochemical activity prepared by polymer-assisted direct deposition. Scripta Mater, 63, 757(2010).

    [88] H Luo, Y Lin, H Wang et al. Amorphous silica nanoparticles embedded in epitaxial SrTiO3 and CoFe2O4 matrices. Angew Chem Int Edit, 47, 5768(2008).

    [89] A K Burrell, T M McCleskey, P Shukla et al. Controlling oxidation states in uranium oxides through epitaxial stabilization. Adv Mater, 19, 3559(2007).

    [90] S K Vishwanath, T An, W Y Jin et al. The optoelectronic properties of tungsten-doped indium oxide thin films prepared by polymer-assisted solution processing for use in organic solar cells. J Mater Chem C, 5, 10295(2017).

    [91] J S Hwang, J M Lee, S K Vishwanath et al. Effects of H2 plasma treatment on the electrical properties of titanium-doped indium oxide films prepared by polymer-assisted deposition. J Vac Sci Technol A, 33, 041402(2015).

    [92] L Tao, K Chen, Z Chen et al. Centimeter-scale CVD growth of highly crystalline single-layer MoS2 film with spatial homogeneity and the visualization of grain boundaries. ACS Appl Mater Inter, 9, 12073(2017).

    [93] T Jurca, M J Moody, A Henning et al. Low-temperature atomic layer deposition of MoS2 films. Angew Chem Int Edit, 56, 4991(2017).

    [94] Y Shi, Y Zhou, D R Yang et al. Energy level engineering of MoS2 by transition-metal doping for accelerating hydrogen evolution reaction. J Am Chem Soc, 139, 15479(2017).

    [95] J Suh, T L Tan, W Zhao et al. Reconfiguring crystal and electronic structures of MoS2 by substitutional doping. Nat Commun, 9, 199(2018).

    [96] H Tan, W Hu, C Wang et al. Intrinsic ferromagnetism in Mn-substituted MoS2 nanosheets achieved by supercritical hydrothermal reaction. Small, 13, 1701389(2017).

    [97] Z Xiang, Z Zhang, X Xu et al. Room-temperature ferromagnetism in Co doped MoS2 sheets. Phys Chem Chem Phys, 17, 15822(2015).

    [98] Y C Cheng, Z Y Zhu, W B Mi et al. Prediction of two-dimensional diluted magnetic semiconductors: Doped monolayer MoS2 systems. Phys Rev B, 87, 100401(2013).

    [99] G Liu, A W Robertson, M M Li et al. MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction. Nat Chem, 9, 810(2017).

    [100] B Li, T Xing, M Z Zhong et al. A two-dimensional Fe-doped SnS2 magnetic semiconductor. Nat Commun, 8, 1958(2017).

    Hongtao Ren, Yachao Liu, Lei Zhang, Kai Liu. Synthesis, properties, and applications of large-scale two-dimensional materials by polymer-assisted deposition[J]. Journal of Semiconductors, 2019, 40(6): 061003
    Download Citation