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Abstract: Two-dimensional (2D) materials have attracted considerable attention because of their novel and tunable electronic,
optical, ferromagnetic, and chemical properties. Compared to mechanical exfoliation and chemical vapor deposition, polymer-as-
sisted deposition (PAD) is more suitable for mass production of 2D materials owing to its good reproducibility and reliability. In
this review, we summarize the recent development of PAD on syntheses of 2D materials. First, we introduce principles and pro-
cessing steps of PAD. Second, 2D materials, including graphene, MoS,, and MoS,/glassy-graphene heterostructures, are presen-
ted to illustrate the power of PAD and provide readers with the opportunity to assess the method. Last, we discuss the future pro-
spects and challenges in this research field. This review provides a novel technique for preparing 2D layered materials and may

inspire new applications of 2D layered materials.
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1. Introduction

Polymer-assisted deposition (PAD), which was first repor-
ted in 20041, provides a generalized strategy toward growing
metal compounds with a desired chemical composition at low
cost. Compared with other commonly used deposition meth-
ods such as physical vapor deposition (PVD)2-4, and chemical
vapor deposition (CVD)#-7], PAD employs metal ions coordin-
ated to polymers as the precursor. In PAD, the polymer has
four notable features: (1) The formation of covalent com-
plexes between the metal cations and the lone pair on the nitro-
gen atoms of the polymer enables the growth of thick or
crack-free thin films. (2) The polymer precursor solution is
highly stable in air for months. Additionally, the polymer main-
tains a homogeneous distribution of metal ions in the solu-
tion. Various metal-polymer solutions can be mixed at de-
sired ratios. (3) The viscosity of the solution can be adjusted by
simple removing water under vacuum or diluting with deion-
ized water. (4) The polymer solution can be coated onto differ-
ent substrates by using many methods, including spin, dip,
spray, and inkjet coatings. More importantly, the conformal
coating of porous materials!®-" can be realized. In the past dec-
ades, metal oxides, metal nitrides, metal carbides, and two-di-
mensional (2D) layered materials have been successfully pre-
pared by PAD as shown in Figs. 1 and 2.

The discovery of single-layer graphene via mechanical exfo-
liation in 200412 revealed that not only fabrication of stable,
single-atom thick 2D materials from van der Waals solids is pos-
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sible, but these materials exhibit extraordinary physical proper-
ties!'3-151, Their novel properties inspire many fundamental stud-
ies'6-191 and technological advancements* 201 for a wide
range of applications including electronics, photonics, piezo-
electrics, and spintronics. Mechanical exfoliation!'% 29 s a popu-
lar method for prototyping devices based on 2D materials. The
main drawback of this method is that the size and productiv-
ity of materials and devices prepared are very limited. Anoth-
ercommonly used method for synthesizing high-quality 2D ma-
terials is chemical vapor deposition (CVD), which, however, is
still not so cost-effective for syntheses of 2D materials. In con-
trast, PAD is a bottom-up, cost-effective, and precisely con-
trolled method for large-scale production of 2D materials. In
this review, we summarize the recent development of PAD par-
ticularly on syntheses of 2D materials. First, we introduce the
principles and processing steps of PAD. Second, 2D materials, in-
cluding graphene, MoS,, and MoS,/glassy-graphene hetero-
structures, are provided to illustrate the power of PAD and
provide readers with the opportunity to assess the method.
Last, we present the future prospects and challenges in this re-
search field. This review provides a novel technique for prepar-
ing 2D materials and may inspire new applications of 2D materi-
als.

2. Polymer-assisted deposition

2.1. Development of polymer-assisted deposition

The past 15 years have witnessed rapid developments in
the preparation of epitaxial thin films by using PAD. Thus far,
PAD has been successfully used to grow metal-oxides2'-24, met-
al-nitrides('1. 25-32 metal-carbides!33-35, single element materi-
als (e.g., carbon films®!, Ge films[39], and glassy graphenel37. 38)),
and TMD (MoS,[16:3%.40]) as shown in Figs. 1 and 2. In the past,
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Fig. 1. (Color online) Timeline showing key development by polymer-assisted deposition. Metal oxides; metal nitrides; metal carbides; glassy-

graphene; MoS,; MoS,/glassy-graphene heterostructure.
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Fig. 2. (Color online) Application of as-grown thin films by PAD.

we built ZnO nanostructuresi22-24land MoS,['® thin films.
Metal oxides have received considerable attention be-
cause of their potential applications in nuclear targetsi#1-47,
spintronic devices[22-2448-53] and self-cleaning glasses>* due
to their versatile properties, including ferroelectricity, ferro-
magnetism, piezoelectricity, semiconductivity, and supercon-
ductivity. Many simple oxides, such as Eu,0541-44, ZnQ[21-24],
TiO,: 54-58] and VO,59-64 have been prepared by using PAD.
Polymers can prevent metal ions from engaging in unwanted
chemical reactions; thus, the growth of complex metal-oxide
films through PAD is controllable and reproducible. Many com-
plex metal-oxide thin films, such as Ba,_, Sr, TiO5[50.52.65-671 CyAl-
0O,68], mixed-valence perovskitel®®], BiVO,©9, LiMn,0,"%, Ni-
Co0,0,"1, Gd-Ce0,72, CuScO,[73], CaCusTi0¢,74 73, Re,NiMn-
0478, Co-NdNiO577], CuSc;_,Sn,0,78], Smy,Cer5010.,79, and
Y;Fe;04,8%, have been grown by using PAD.
Metal nitrides are used in many fields due to their hardne-
ss, electronic propertiest- 2>-28 321 superconductivity!26: 29-31],
and magnetic properties!26: 311, However, large mismatches ex-
ist in either the lattice parameters or the thermal expansion
coefficients between the film and the substrate, contributing
to great challenges in growth of epitaxial nitride films. In 2008,
epitaxial GaN[2! thin films were deposited on (0001) sapphire
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substrates by PAD for the first time. PAD has also been used
for growing binary nitride films, such as NbN[26], TiN[28], AIN[28.32],
MoNI29-311 and UN,8", Complex metal nitride films, including
Ti; ALNI28], BaZrN,[", BaHfN,['"], and SrTiN,[27], have been de-
posited by using PAD.

Transition-metal carbides exhibit high melting point, high
electrical conductivity33 35 821 excellent mechanical proper-
tiesB33-35], and good chemical resistancel®'l, These properties
make them desirable for applications in wear coatings, passiva-
tion layers, turbine engines, and aircraft. The growth of single
elements (e.g., C% and GeB¢l) and carbides (e.g., TiC, NbC, VC,
TaC, and UC,)33-35.82,83] has also been realized by using PAD.

Two-dimensional layered materials, such as graphene and
MoS,, are another type of materials prepared by PAD. In the
past few years, glassy graphenel37], and MoS,[1¢ 39401 thin films
have been successfully obtained by PAD. In addition, 2D
layered materials have been fabricated into various electronic

devices.
2.2. Principles and processing steps of PAD

In the PAD process, metal ions are coordinated to the poly-
mer as the precursor. Covalent complexes are formed
between the metal cations and the lone pair on the nitrogen
atoms of the polymer. Thus, the oligomerization reaction will

......
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Fig. 3. (Color online) Schematic illustration of the main processing steps used to grow thin films by PAD.

Table 1. Elements in the magenta boxes coordinated with polymer to form a stable complex. The elements shown in red font were bound with

the polymer in the previous reports.
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not occur unless certain conditions are satisfied. Hence, the so-
lutions are stable for months. At approximately 450 to 500 °C,
thepolyethyleneimine (PEIl) polymerundergoesthermal depoly-
merization backtoNH,CH=CH,.Theethylenediaminetetra-acet-
icacid (EDTA) decomposes to acetic acid, formic acid, and ethyl-
enediamine even in inert or H, atmospheres.

The main processing steps involve the preparation of the
metal-precursor solution, ultrafiltration, coating, and anneal-
ing. Fig. 3 illustrates the typical PAD steps for the growth of
thin films. We will describe the unique chemistry and basic
steps of PAD in the following part.

2.2.1. Preparation of metal-polymer solution

Table 1 summarizes over 45 different elements that can
be coordinated with polymers to form a stable polymer precurs-
or solution.In PAD, the polymer in the solution binds to the met-
alionsviaelectrostaticattraction, hydrogen bonding, and/or co-
valent bonding. The first-row transition metals, using nitrates,
acetates or chlorides, bind easily to the simple PEl polymer. Oth-
er hard-to-bind metals, such as Sn2+ and Ti2t, need the PEl to
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be functionalized with carboxylic acids to provide a stable co-
ordination environment. The third method for binding metals
utilizes the ability of protonated PEI to coordinate anionic met-
al complexes. For instance, EDTA could form stable com-
plexes with almost all metals, and then the complexes success-
fully bind to the PEI.

In Table 2, we summarize 40 different elements that bind
well to the polymer. These metal-polymer solutions have been
reported in previous works. Interestingly, one metal element-
al may be bound with different polymers (PEl or PEI-EDTA).

2.2.2. Ultrafiltration

The metal-polymer solution passes through a filter or mem-
brane to remove cations and anions that are not coordinated
polymers, as shown in Fig. 3(b). In the ultrafiltration process,
Amicon® ultra centrifugalfiltration units and a centrifugal appar-
atus are used for filtration in our experiments.

2.2.3. Coating
After ultrafiltration, the polymer solution is coated onto dif-
ferent conformation substrates via various methods, includ-

......
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Table 2. Summary of various metal elements binded by polymers.

Element Metal precursor Polymer Element Metal precursor Polymer
Lit701 LiNOs PEI+ EDTA Rul#9 RuCl3 PAA

CB37) CeH1,06 PEI Agl8 AgNO; PEIl + C4HgO,
Alle8l AI(NOs)5 PEI + HF Int8s] IN(NO3)3 PEI

Cal*s] Ca(OH), PEI Snl86l Sncl, PEIC

Scl73l Sc(NOs3)5 PEI+ EDTA Bal6s] Ba(NOs), PEI + EDTA
TilN Ti(cat)3(NH,), PEI Hft42] HfCl, PEI

v [0l VOSO, PEI+ EDTA Tal33l TaCls PEI + HF
Mn45] MnCl, PEI+ EDTA W87l (NH4),WO, PEI

Felssl FeCls PEI Bil10l Bi(NOs)3 PEI + EDTA
Colssl CoCl, PEI Lal45] La(NOs)3 PEI + EDTA
Ni51] Ni(NOs), PEI+ EDTA Cel72 Ce(NOs); PEI + EDTA
Culesl Cu(NO3), PEI Prl76l Pr(NOs); PEIl + EDTA
Zn(22l Zn(NO3), PEI NdL7el Nd(NO3); PEI + EDTA
Gal25] GaCls PEI Sml76] Sm(NO3);3 PEI + EDTA
Gel36] GeO, PEI+ EDTA Eul42] EuCls PEI

Srl1l Sr(NO3), PEI+ EDTA Gdl72 Gd(NOs); PEI + EDTA
ytiol Y(NO3)3 PEI+ EDTA Tml42] TmCl; PEI

Zr155] ZrO(NOs), PEI + EDTA yeal UO,(0Ac), PEI

Nbl26] NbCl; PEI + HF Npt46] 239Np solution PEIl + EDTA
Molel (NH4)¢M070,4 PEI+ EDTA pul46l 239py solution PEI + EDTA

ing spin, dip, spray, and inkjet. Therefore, the substrate need
not to be flat, such as Anodisc™ membranes!'% 5%, the grating
coupler!>¢], carbon nanotubes (CNT), and quartz fibers!® 331, Fur-
thermore, conformal coating and nanostructured materials
may be realized successfully by PAD. This feature makes PAD at-
tractive for use to grow the thin films, form the conformal coat-
ing, and synthesize the nanostructured materials.

2.2.4. Thermal de-polymerization and crystallization

To depolymerize the polymer and enable the crystalliza-
tion of the film, the coated substrate is then treated in a con-
trolled environment at the desired temperature. The water is
driven out at moderate temperature (approximately 120 °C).
Furthermore, the PAD process involves high -temperature (ap-
proximately 500 °C) exposure in a controlled environment to re-
move the polymer. The PEl and EDTA in the precursor film do
not undergo combustion, but rather thermal depolymeriza-
tion back to NH,CH = CH,, acetic acid, formic acid, and ethylene-
diamine. Notably, this non-combustive process can lead to re-
duced carbon contamination in the synthesized thin films.

The thin films may be single-crystal, polycrystalline, or
amorphous, depending on the annealing temperature and sub-
strate used. Importantly, the composition of as-grown materi-
als is determined by the metal precursor, temperature, and at-
mospheric environment. For example: (1) the thermal treat-
ment of the precursor film containing Tiions in areducing atmo-
sphere, such as argon mixed with hydrogen, will result in pure
Ti. (2) the precursor film will be converted to TiO, if the ther-
mal treatment is performed in pure oxygenl!: 11:43,90,911- (3) the
same precursor film will be transformed to TiN, if the thermal
treatment is carried out in an ammonia atmosphere®2; and (4)
the precursor film will be converted to TiC if the thermal treat-
ment is carried out in a gas mixture of ethylene and forming
gas (Ar with H,)133:351, Furthermore, high-quality epitaxial films
have been grown using PAD by using a lattice matched sub-
strate and optimal temperature profiles.

3. Large-scale 2D materials by PAD

3.1. Transparent carbon films and glassy graphene
thin films

Transparent conducting films are highly important to elec-
tronic, flexible, and transparent devices. Graphene has poten-
tial applications in solar cells, touch panels, wearable electron-
ics, and flexible displays!37: 381, To prepare graphene or carbon
thin films, various precursors have been used as carbon
sources. In addition, graphitic carbon and glassy graphene
have been successfully fabricated via PADI® 371, Furthermore,
previous experimental results show that it is possible to fabric-
ate large-scale heterostructures.

Cao et al. utilized PEI as a carbon source for depositing
transparent carbon film on different quartz substrates. In this
work, Cu ions are first introduced to grow the graphitic car-
bon. Further, introducing Cu ions could not only improve the
decomposition temperature of PEIl, but also help the graphitiza-
tion of the carbon thin film. Finally, the Cu nanoparticles are re-
moved by immersing the film into FeCl; solutions and etching
Cu to keep the carbon film unbroken. The partially graphit-
ized transparent carbon film is deposited by the PAD of the
Cu?+ coordinated PEI.

As shown in Figs. 4 and 5, glucose (C¢H;,0¢) was utilized
by Dai et al.3"! as a carbon source for depositing ultra-smooth
glassy graphene thin films.

The three types of carbon-based thin films are deposited
by PAD under different catalysis conditions, as shown in Fig. 4.
(1) The glassy carbon film, which is partially crystallized and dis-
ordered, is grown in Figs. 4(a)-4(c). (2) Glassy graphene, an inter-
mediate state between glassy carbon and graphene, is ob-
tained at 850 °C as shown in Fig. 4(d). TEM studies in Fig. 4(f)
show twisted lattice planes. The bent and curved lattice plane
is one of the distinguishing features of glassy graphene. (3)
When the annealing temperature is increased to 1000 °C,
graphene evolves from glassy graphene. From the HRTEM lat-
tice image and the six reflex spots in the SAED, we could con-
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Fig. 6. (Color online) Thickness-dependent bandgap tunable MoS, thin films for optoelectronicsi0l,

firm the high-quality of graphene in Fig. 4(i). Based on the
above analysis, the structural evolution of the three types of ma-
terial is described in Fig. 4(j). In addition, glassy carbon is par-
tially crystallized and disordered as shown in Fig. 4(c); the
glassy graphene in Fig. 4(f) shows a high crystal quality but
has twisted, bent lattice planes; and the graphene in Fig. 4(i)
has perfect lattices.

Fig. 5(a) indicates that a circuit pattern is obtained after
the laser writing and rinsing process. The glassy graphene cir-
cuits may be easily transferred to any substrate after anneal-
ing, as shown in Fig. 5(b), such as a flexible or rigid substrate.
In Fig. 5(c), the sheet resistance is mediated with the bending ra-
dius. In addition, the vibration is anisotropic. After repeated
bending or twisting, the resistance does not show any obvi-
ous changes as shown in Fig. 5(d). In this work, graphene FET
is also fabricated to explore its potential application.

For the first time, an ultra-smooth glassy graphene thin
film is grown by PAD at the inch scale. The thin film exhibits ex-
cellent conductivity, transparency, flexibility, and mechanical
and chemical stability. Most importantly, as-deposited thin
films are imprinted in flexible and transparent devices.

3.2. Highly scalable synthesis of MoS, thin films

Two-dimensional semiconductors MoS, are attracting a
wide range of research interest due to their potential applica-
tions. MoS, thin films are also prepared through PAD. Further-
more, as-deposited thin films are fabricated into a photodetect-
or with a broad spectral response and excellent performance.

Zhu et al*9 reported growing thickness-controlled MoS,
films by using PAD for the first time. In the PAD process,
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(NH4)§M0,0,4-4H,0 and pure sulfur serve as Mo and S sources,
respectively. The thickness of the films adjusted by the pre-
cursor concentration can be readily changed from 50 to 2.5
nm.

Figs. 6(a)-6(d) shows that the thin film is smooth, continu-
ous, homogeneous, and dense. The thickness and root-mean-
square (RMS) surface roughness of the MoS, thin film are ap-
proximately 90 and 10.7 nm, respectively. The HRTEM image
and the SAED pattern suggest that the film has high crystallin-
ity.

In addition, the optical band gap energies for the films
with different thicknesses are estimated by the UV-vis absorp-
tion spectra. The PL responses are the intensity decay and red-
shifted in thicker films in Fig. 6(g). The A;4 peak shows a blue-
shift, which is consistent with the previous report. Notably, the
thickness is mediated by the concentration of the Mo precurs-
or.

To explore their photoresponse properties, MoS, films are
fabricated into photoconductors, and then characterized un-
dersimulated AM 1.2 illumination. Interestingly, the ratio of con-
ductivity under illumination to dark conductivity is near 3, and
the average response time is approximately 0.3 s, as shown in
Table 3.

Yang et al3% developed a highly scalable coating process
using PAD without sulfurization. The anhydrous ammonium tet-
rathiomolybdate (ATM) is converted into MoS; (120-260 °C) or
2H-MoS,; (> 400 °C). The color difference with various thick-
nesses is shown in Fig. 7.

Large-scaleand controllable thicknessisthe main character-
istic of MoS, thin films from PAD. Given that most of as-grown
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Table 3. Comparison of three different methods to synthesize MoS, and MoS, field-effect transistor structures.

Method Precursorgas Temperature (°C)  Crystalization ~ Conformal Size Mobility (cm2/(V-s))  Response time  lon/logs ratio
CvD Ar 1000 Single-crystal  No ~cm? 9.6 - 105092
Ar 850 Single-crystal  No - 50 - 106092
ALD H,S; Ar 60 Amorphous Yes - 0.23 - 1020931
PAD Ar+H, 850 Polycrystalline ~ Yes ~m?2 - 0.3 ms 31401
Ar+H, 700 Polycrystalline ~ Yes 6-inch - 1.0 ms 104391
Ar+H, 550 Amorphous Yes ~m?2 - - ~lel
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Fig. 7. (Color online) Wafer-scale synthesis of MoS, thin films via polymer-assisted deposition39.,

thin films are polycrystalline and have many defects, the photo-
detector fabricated by as-deposited MoS; thin films did not ex-
hibit excellent properties, as shown in Table 3.

Ren et all'®) employed MoS, thin films to study the dynam-
ic propagation of web telephone-cord buckles, as shown in
Fig. 8(a). Parts (b)-(g) of Fig. 8 show a point load applied by a
probe that can initiate several branches of telephone-cord
buckles. Subsequently, each cord front will branch into two
new daughter cords after a certain distance of propagation,
forming web buckles with many node positions. Furthermore,
the 3D features of web buckles are probed by atomic force mi-
croscopy. Interestingly, the buckled semiconducting films
have potential applications as diffusive reflection coatings, capil-
lary microchannels, and hydrogen evolution reaction elec-
trodes.

3.3. MoS,/glassy-graphene heterostructures as
transparent photodetectors
Based on the previous experiment resultsB7. 40, MoS,/
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glassy-graphene heterostructures on quartz substrates have
been successfully prepared using a vertically layer-stacking
approach. The heterostructures synthesis procedure is illus-
trated. (1) The MoS,/SiO,/Si nanosheet is spin coated with poly-
methyl-methacrylate (PMMA). (2) The PMMA/MoS, layer is sep-
arated from the SiO,/Si substrate. (3) A g-graphene/quartz
nanosheet is patterned by O, plasma etching. (4) The PMMA/
MoS, is transferred onto the g-graphene/quartz, followed by
the removal of PMMA and cleaning. As seen in Fig. 9(b), the het-
erostructures exhibit good transparency. The schematic of the
transparent photodetector based on the MGH/quartz is shown
in Fig. 9(c).

In summary, the heterostructures are synthesized by a lay-
er-by-layer transfer technique, and their application as transpar-
ent photodetectors are reported for the first timel38l,

4, Prospective and challenges

Compared with the experimental methods, such as chemic-
al vapor deposition (CVD) and atomic layer deposition (ALD),
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polymer-assisted deposition (PAD) has the advantages of low
cost, large scale, easy doping and conformal coatings.

Some novel 2D semiconductors and various functional
thin films have been successfully deposited by PAD, but it still
remains several challenges on the synthesis of mono-layer
thin films. Most of current MoS, thin films synthesized by PAD
still have few layers and are polycrystalline with many defects.
The growth of large-scale mono-layer thin films may be diffi-
cult to realize by PAD, thereby affecting the transport perform-
ance of the corresponding devices. In the future, if large single
crystals can be realized by PAD, their device applications will
be fully extended to mass production.

The other challenge is the preparation of 2D materials
with doping by PAD. Doping, which is the intentional introduc-
tion of impurities into a parent material, plays a significant role
in functionalizing 2D materials. For example, the wolfram and
selenium chemical doping of MoS, is an effective way of engin-
eering the optical bandgap®¥, and Nb-, Co-, and Mn-doped
MoS, few layers exhibit excellent transport properties!®sl. Mag-
netic atoms, such as Mn, Fe, Co, and Ni, doped 2D TMDs, are
promising as 2D diluted magnetic semiconductors, and have
been predicted to exhibit ferromagnetic behavior at room tem-
peraturel-%l, Thus far, most studies on doping of 2D materi-
als have been intensively focused on the methods of mechanic-
al exfoliation, CVD, and solvothermal methods, but few on
PAD. The development of doping 2D semiconductors with nov-
el properties by PAD is a promising research direction be-
cause they have various potential applications in optoelectron-
ic, spintronics!'%, hydrodeoxygenation reaction®, and hydro-
gen evolution reaction®¥,

As a characteristic of PAD, conformal coatings have been
grown on non-planar surfaces such as quartz fibers® 351 in the
past. Yi et al 133 reported the synthesis of carbon nanotube/TiC
hybrid fibers with improved mechanical strength and electric-
al conductivity. In this work, a dense and more compact fiber
was formed. The transparent carbon film[®! was easily coated
onto flexible quartz fiber by dip coating. The carbon thin film
wrapped the quartz fiber tightly and uniformly, suggesting
the excellent combination between carbon film and the
quartz fiber.
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