• Laser & Optoelectronics Progress
  • Vol. 54, Issue 5, 50001 (2017)
Zheng Xiu1、2、* and Liu Yong1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop54.050001 Cite this Article Set citation alerts
    Zheng Xiu, Liu Yong. Large-Scale Photonic Integration Technologies Based on Multi-Project Wafer Flow Sheet[J]. Laser & Optoelectronics Progress, 2017, 54(5): 50001 Copy Citation Text show less
    References

    [1] Miller S E. Integrated optics: An introduction[J]. Bell Syst Tech J, 1969, 48(7): 2059-2069.

    [2] Tien P K. Integrated optics and new wave phenomena in optical waveguides[J]. Rev Mod Phys, 1977, 49(2): 361-420.

    [3] Li M, Chen X F, Su Y K, et al. Photonic integration circuits in China[J]. IEEE J Quantum Elect, 2016, 52(1): 0601017.

    [4] Thomson D, Zilkie A, Bowers J E, et al. Roadmap on silicon photonics[J]. J Optics, 2016, 18(7): 073003.

    [5] Smit M, Leijtens X, Ambrosius H, et al. An introduction to InP-based generic integration technology[J]. Semicond Sci Tech, 2014, 29(8): 083001.

    [6] Worhoff K, Heideman R G, Leinse A, et al. TriPleX: A versatile dielectric photonic platform[J]. Adv Opt Tech, 2015, 4(2): 189-207.

    [7] Fang Z, Zhao C Z. Recent progress in silicon photonics: A review[J]. ISRN Optics, 2012, 2012: 428690.

    [8] Liu J F, Sun X C, Camacho-Aguilera R, et al. Ge-on-Si laser operating at room temperature[J]. Opt Lett, 2010, 35(5): 679-681.

    [9] Li G L, Zheng X Z, Yao J, et al. 25 Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning[J]. Opt Express, 2011, 19(21): 20435-20443.

    [10] Liao S R, Feng N N, Feng D Z, et al. 36 GHz submicron silicon waveguide germanium photodetector[J]. Opt Express, 2011, 19(11): 10967-10972.

    [11] Belt M, Blumenthal D J. Erbium-doped waveguide DBR and DFB laser arrays integrated within an ultra-low-loss Si3N4 platform[J]. Opt Express, 2014, 22(9): 10655-10660.

    [12] Kish F A, Welch D, Nagarajan R, et al. Current status of large-scale InP photonic integrated circuits[J]. IEEE J Sel Top Quant, 2011, 17(6): 1470-1489.

    [13] Kish F, Nagarajan R, Welch D, et al. From visible light-emitting diodes to large-scaleⅢ-Ⅴ photonic integrated circuits[J]. Proc of IEEE, 2013, 101(10): 2255-2270.

    [14] Lawniczuk K. Multiwavelength transmitters in generic photonic integration technologies[D]. Eindhoven: Technische Universiteit Eindhoven, 2014.

    [15] EPIXfab[EB/OL].[2017-04-10]. http://www.epixfab.eu/.

    [16] Europractice. Europractice silicon photonics technologies[EB/OL].[2017-04-10]. http://www.europractice-ic.com/SiPhotonics_technology.php.

    [17] de Oliveira J C R F, Freitas A P, Peternella F G, et al. The first Brazilian integrated 100 G DPQPSK transmitter on a 4×3 mm silicon photonic chip[C]. SPIE, 2014, 9010: 90100D.

    [18] Ruocco A, Bogaerts W.Fully integrated SOI wavelength meter based on phase shift technique[C]. IEEE 12th International Conference on GPF, 2015: 15556423.

    [19] Lawniczuk K, Kazmierski C, Provost J G, et al. InP-based photonic multiwavelength transmitter with DBR laser array[J]. IEEE Photonic Tech L, 2013, 25(4): 352-354.

    [20] Zheng X, Raz O, Calabretta N, et al. Multiport InP monolithically integrated all-optical wavelength router[J]. Opt Lett, 2016, 41(16): 3892-3895.

    [21] Heideman R G, Hoekman M. Low modal birefringent waveguides and method of fabrication: US7146087[P]. 2006-12-5. http://xueshu.baidu.com/s wd=paperuri:(6065b942b1f6fb652fc2b32d02e15535)&filter=sc_long_sign&sc_ks_ para=q%3DLow+modal+birefringent+waveguides+and+method+of+fabrication&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_us=992176494255774108.

    [22] Heideman R G, Walker J A.Surface waveguide technology for telecom and biochemical sensing[C]. SPIE, 2006, 6125: 61250S.

    [23] Roeloffzen C G H, Zhuang L, Taddei C, et al. Silicon nitride microwave photonic circuits[J]. Opt Express, 2013, 21(9): 22937-22961.

    [24] Heideman R G, Geuzebroek D, Leinse A, et al. Low loss, high contrast optical waveguides based on CMOS compatible LPCVD processing[C]. Proceedings European Conference on Integrated Optics, 2007: WB0.

    [25] Bauters J F, Heck M J R, John D D, et al. Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding[J]. Opt Express, 2011, 19(24): 24090-24101.

    [26] Luke K, Okawachi Y, Lamont M R E, et al. Broadband mid-infrared frequency comb generation in a Si3N4 microresonator[J]. Opt Lett, 2015, 40(21): 4823-4826.

    [27] Shao Z K, Chen Y J, Chen H, et al. Ultra-low temperature silicon nitride photonic integration platform[J]. Opt Express, 2016, 24(3): 1865-1872.

    [29] Boerkamp M, van Leest T, Heldens J, et al.On-chip optical trapping and Raman spectroscopy using a TriPleX dual-waveguide trap[J]. Opt Express, 2014, 22(25): 30528-30537.

    [30] Yu H, Li Y, Yu H, et al. Record high-Q optical bandpass filter based on the EIT-like effect between two microrings[C]. Optical Fiber Communication Conference, 2016: Th1K.5.

    [31] A*STAR IME. Multiple-projects wafer (MPW) services[EB/OL].[2017-04-10]. http://www.a-star.edu.sg/ime/SERVICES/MULTI-PROJECT-WAFER-MPW-SERVICES.aspx.

    [32] Novack A, Liu Y, Ding R, et al.A 30 GHz silicon photonic platform[C].SPIE, 2013,8781:878107.

    [33] Baehr-Jones T. OpSIS-IME OI50 process-performance summary[EB/OL]. (2013-10-08)[2017-04-10]. http://opsisfoundry.org/wp-content/uploads/opsis_oi50_performance_summary_10_8_13.pdf.

    [34] CMP. Silicon photonic ICs Si310-PHMP2M[EB/OL].[2017-04-10]. http://cmp.imag.fr/datasheet/photonic-mpw-prototyping-si310-phmp2m.

    [35] IHP. SG25PIC integrated photonics technology[EB/OL]. (2015-02-01)[2017-04-10]. http://www.ihp-microelectronics.com/downloads/168/SG25PIC.pdf.

    [36] JePPIX. Multiproject wafers[EB/OL].[2017-04-10]. http://www.jeppix.eu/multiprojectwafers-1/.

    [37] PhoeniX Software. Process design kits[EB/OL].[2017-04-10]. http://www.phoenixbv.com/product.php submenu=dk&prdgrpID=15.

    Zheng Xiu, Liu Yong. Large-Scale Photonic Integration Technologies Based on Multi-Project Wafer Flow Sheet[J]. Laser & Optoelectronics Progress, 2017, 54(5): 50001
    Download Citation