• Journal of Semiconductors
  • Vol. 42, Issue 11, 112301 (2021)
Teng Fei1、2、3, Shenqiang Zhai1、2, Jinchuan Zhang1、2, Ning Zhuo1、2, Junqi Liu1、2、3, Lijun Wang1、2、3, Shuman Liu1、2, Zhiwei Jia1、2, Kun Li1、2、3, Yongqiang Sun1、2、3, Kai Guo1、2, Fengqi Liu1、2、3, and Zhanguo Wang1、2、3
Author Affiliations
  • 1Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 2Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing 100083, China
  • 3Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.1088/1674-4926/42/11/112301 Cite this Article
    Teng Fei, Shenqiang Zhai, Jinchuan Zhang, Ning Zhuo, Junqi Liu, Lijun Wang, Shuman Liu, Zhiwei Jia, Kun Li, Yongqiang Sun, Kai Guo, Fengqi Liu, Zhanguo Wang. High power λ ~ 8.5 μm quantum cascade laser grown by MOCVD operating continuous-wave up to 408 K[J]. Journal of Semiconductors, 2021, 42(11): 112301 Copy Citation Text show less
    References

    [1] J Faist, F Capasso, D Sivco et al. Quantum cascade laser. Science, 264, 553(1994).

    [2] A Hugi, G Villares, S Blaser et al. Mid-infrared frequency comb based on a quantum cascade laser. Nature, 492, 229(2012).

    [3] J Zhang, L Wang, W Zhang et al. Holographic fabricated continuous wave operation of distributed feedback quantum cascade lasers at λ ≈ 8.5 μm. J Semicond, 32, 044008(2011).

    [4] J Faist, M Beck, T Allen et al. Quantum-cascade lasers based on a bound-to-continuum transition. Appl Phys Lett, 78, 147(2001).

    [5] M Beck, D Hofstetter, T Aellen et al. Continuous wave operation of a mid-infrared semiconductor laser at room temperature. Science, 295, 301(2002).

    [6] D Botez, J D Kirch, C Boyle et al. High-efficiency, high-power mid-infrared quantum cascade lasers. Opt Mater Express, 8, 1378(2018).

    [7] C A Wang, B Schwarz, D F Siriani et al. MOVPE growth of LWIR AlInAs/GaInAs/InP quantum cascade lasers: Impact of growth and material quality on laser performance. IEEE J Sel Top Quantum Electron, 23, 1(2017).

    [8] X Feng, C Caneau, H P Leblanc et al. Watt-level room temperature continuous-wave operation of quantum cascade lasers with λ >10 μm. IEEE J Sel Top Quantum Electron, 19, 1200407(2013).

    [9] B Schwarz, C A Wang, L Missaggia et al. Watt-level continuous-wave emission from a bifunctional quantum cascade laser/detector. ACS Photonics, 4, 1225(2017).

    [10] W Zhou, Q Y Lu, D H Wu et al. High-power, continuous-wave, phase-locked quantum cascade laser arrays emitting at 8 microm. Opt Express, 27, 15776(2019).

    [11] C A Wang, B Schwarz, D F Siriani et al. Sensitivity of heterointerfaces on emission wavelength of quantum cascade lasers. J Cryst Growth, 464, 215(2017).

    [12] A Lyakh, R Maulini, A Tsekoun et al. 3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach. Appl Phys Lett, 95, 141113(2009).

    [13] J B Khurgin, Y Dikmelik, P Q Liu et al. Role of interface roughness in the transport and lasing characteristics of quantum-cascade lasers. Appl Phys Lett, 94, 091101(2009).

    [14] K Fujita, S Furuta, A Sugiyama et al. High-performance λ ~8.6 μm quantum cascade lasers with single phonon-continuum depopulation structures. IEEE J Quantum Electron, 46, 683(2010).

    [15] P Figueiredo, M Suttinger, R Go et al. Progress in high-power continuous-wave quantum cascade lasers. Appl Opt, 56, H15(2017).

    [16] T Yu, S Liu, J Zhang et al. InAs-based interband cascade lasers at 4.0 μm operating at room temperature. J Semicond, 39, 114003(2018).

    [17] P F Fewster. Interface roughness and period variations in MQW structures determined by X-ray diffraction. J Appl Cryst, 21, 524(1988).

    [18] P F Fewster. X-ray diffraction from low-dimensional structures. Semicond Sci Technol, 8, 1915(1993).

    [19] D Savage, J Kleiner, N Schimke et al. Determination of roughness correlations in multilayer films for x-ray mirrors. J Appl Phys, 69, 1411(1991).

    [20] D Botez, C C Chang, L J Mawst. Temperature sensitivity of the electro-optical characteristics for mid-infrared (λ = 3–16 μm)-emitting quantum cascade lasers. J Phys D, 49, 043001(2015).

    [21] A Lyakh, R Maulini, A Tsekoun et al. Multiwatt long wavelength quantum cascade lasers based on high strain composition with 70% injection efficiency. Opt Express, 20, 24272(2012).

    [22] P Yang, J Zhang, Z Gu et al. Coupled-ridge waveguide quantum cascade laser array lasing at λ ~ 5 µm. J Semicond, 42, 092901(2021).

    [23] A Wittmann, Y Bonetti, M Fischer et al. Distributed-feedback quantum-cascade lasers at 9 μm operating in continuous wave up to 423 K. IEEE Photonics Technol Lett, 21, 814(2009).

    [24] Y Chiu, Y Dikmelik, P Q Liu et al. Importance of interface roughness induced intersubband scattering in mid-infrared quantum cascade lasers. Appl Phys Lett, 101, 171117(2012).

    [25] G Xu, A Li. Interface phonons in the active region of a quantum cascade laser. Phys Rev B, 71, 235304(2005).

    [26] C Boyle, K M Oresick, J D Kirch et al. Carrier leakage via interface-roughness scattering bridges gap between theoretical and experimental internal efficiencies of quantum cascade lasers. Appl Phys Lett, 117, 051101(2020).

    [27] M P Semtsiv, Y Flores, M Chashnikova et al. Low-threshold intersubband laser based on interface-scattering-rate engineering. Appl Phys Lett, 100, 163502(2012).

    Teng Fei, Shenqiang Zhai, Jinchuan Zhang, Ning Zhuo, Junqi Liu, Lijun Wang, Shuman Liu, Zhiwei Jia, Kun Li, Yongqiang Sun, Kai Guo, Fengqi Liu, Zhanguo Wang. High power λ ~ 8.5 μm quantum cascade laser grown by MOCVD operating continuous-wave up to 408 K[J]. Journal of Semiconductors, 2021, 42(11): 112301
    Download Citation