• Journal of Semiconductors
  • Vol. 45, Issue 3, 032701 (2024)
Yong Sun1、2、*, Wei Zhang1、2, Shuang Han1、2, Ran An1、2, Xin-Sheng Tang1、2, Xin-Lei Yu1、2, Xiu-Juan Miao1、2、**, Xin-Jun Ma1、2, Xianglian1、2, Pei-Fang Li1、2, Cui-Lan Zhao1、2, Zhao-Hua Ding1、2, and Jing-Lin Xiao1、2
Author Affiliations
  • 1Institute of Condensed Matter Physics, Inner Mongolia Minzu University, Tongliao 028043, China
  • 2College of Physics and Electronic Information, Inner Mongolia Minzu University, Tongliao 028043, China
  • show less
    DOI: 10.1088/1674-4926/45/3/032701 Cite this Article
    Yong Sun, Wei Zhang, Shuang Han, Ran An, Xin-Sheng Tang, Xin-Lei Yu, Xiu-Juan Miao, Xin-Jun Ma, Xianglian, Pei-Fang Li, Cui-Lan Zhao, Zhao-Hua Ding, Jing-Lin Xiao. Behavior of exciton in direct−indirect band gap AlxGa1−xAs crystal lattice quantum wells[J]. Journal of Semiconductors, 2024, 45(3): 032701 Copy Citation Text show less
    References

    [1] H L Dong, T T Jia, J Liang et al. Improved carrier transport and photoelectric properties of InGaN/GaN multiple quantum wells with wider well and narrower barrier. Opt Laser Technol, 129, 106309(2020).

    [2] N Liu, G W Hu, M J Dan et al. Piezo-phototronic effect on quantum well terahertz photodetector for continuously modulating wavelength. Nano Energy, 65, 104091(2019).

    [3] L P Xia, J N Huang, E Zhou et al. A photoelectric synapse based on optimized perovskite CH3NH3PbBr3 quantum dot film detectors. Appl Phys Lett, 120, 261112(2022).

    [4] Y Liu, L Y Du, K K Gu et al. Effect of Tm dopant on luminescence, photoelectric properties and electronic structure of In2S3 quantum dots. J Lumin, 217, 116775(2020).

    [5] X Wang, Y Q Feng, P P Dong et al. A mini review on carbon quantum dots: Preparation, properties, and electrocatalytic application. Front Chem, 7, 671](2019).

    [6] F Liu, C Ding, Y H Zhang et al. GeI2 additive for high optoelectronic quality CsPbI3 quantum dots and their application in photovoltaic devices. Chem Mater, 31, 798(2019).

    [7] X Gong, L Guan, Q W Li et al. Black phosphorus quantum dots in inorganic perovskite thin films for efficient photovoltaic application. Sci Adv, 6, eaay5661(2020).

    [8] S Lorenz, C S Erickson, M Riesner et al. Directed exciton magnetic polaron formation in a single colloidal Mn2+: CdSe/CdS quantum dot. Nano Lett, 20, 1896(2020).

    [9] X J Ma, W Zhang, S A Han et al. Phys E, 144, 115387(2022).

    [10] Y Z Deng, X Lin, W Fang et al. Deciphering exciton-generation processes in quantum-dot electroluminescence. Nat Commun, 11, 2309(2020).

    [11] M F C Fobasso, A J Fotue, S C Kenfack et al. Stability and coherence of strong-coupling magneto-bipolaron in asymmetric quantum dot under laser field effect. Phys Lett A, 382, 3490(2018).

    [12] K Konishi, N Naka. Phonon-assisted excitonic absorption in diamond. Phys Rev B, 104, 125204(2021).

    [13] P Geiregat, C Rodá, I Tanghe et al. Localization-limited exciton oscillator strength in colloidal CdSe nanoplatelets revealed by the optically induced stark effect. Light, 10, 112(2021).

    [14] M B Qin, J Y Duan, S Y Xiao et al. Manipulating strong coupling between exciton and quasibound states in the continuum resonance. Phys Rev B, 105, 195425(2022).

    [15] X Gao, Y Q Shen, J J Liu et al. Boosting the photon absorption, exciton dissociation, and photocatalytic hydrogen- and oxygen-evolution reactions by built-in electric fields in Janus platinum dichalcogenides. J Mater Chem C, 9, 15026(2021).

    [16] S Morozov, C Wolff, N A Mortensen. Room-temperature low-voltage control of excitonic emission in transition metal dichalcogenide monolayers. Adv Opt Mater, 9, 2101305(2021).

    [17] M Alijabbari, A Mehramiz, A Mafi. The energy states of an electron in a spheroidal quantum dot with finite barrier. Superlattices Microstruct, 133, 106180(2019).

    [18] M Hbibi, O Mommadi, S Chouef et al. Finite confinement potentials, core and shell size effects on excitonic and electron-atom properties in cylindrical core/shell/shell quantum dots. Sci Rep, 12, 14854(2022).

    [19] B T Ji, E Rabani, A L Efros et al. Dielectric confinement and excitonic effects in two-dimensional nanoplatelets. ACS Nano, 14, 8257(2020).

    [20] W M Klahold, W J Choyke, R P Devaty. Band structure properties, phonons, and exciton fine structure in 4H-SiC measured by wavelength-modulated absorption and low-temperature photoluminescence. Phys Rev B, 102, 205203(2020).

    [21] D Y Qiu, G Cohen, D Novichkova et al. Signatures of dimensionality and symmetry in exciton band structure: Consequences for exciton dynamics and transport. Nano Lett, 21, 7644(2021).

    [22] M Baranowski, P Plochocka, R Su et al. Exciton binding energy and effective mass of CsPbCl3: A magneto-optical study: Publisher’s note. Photon Res, 10, 2447(2022).

    [23] Y Liu, J Wang, N Zhu et al. Investigation on binding energy and reduced effective mass of exciton in organic–inorganic hybrid lead perovskite films by a pure optical method. Opt Lett, 44, 3474(2019).

    [24] A Jahanshir. Relativistic modification of the exciton’s mass in monolayer TMDCs materials. Journal of Advanced Materials and Processing, 8, 45(2020).

    [25] A Chafai, I Essaoudi, A Ainane et al. Nonlinear optical characteristics of an exciton in a GaSb-capped InSb heterodot: Role of size control. Eur Phys J Plus, 135, 203(2020).

    [26] X H Chen, H P Lu, K Wang et al. Tuning spin-polarized lifetime in two-dimensional metal–halide perovskite through exciton binding energy. J Am Chem Soc, 143, 19438(2021).

    [27] R S Zheng, M Matsuura. Exciton binding energies in polar quantum wells with finite potential barriers. Phys Rev B, 58, 10769(1998).

    [28] A V Filinov, C Riva, F M Peeters et al. Influence of well-width fluctuations on the binding energy of excitons, charged excitons, and biexcitons in GaAs-based quantum wells. Phys Rev B, 70, 035323(2004).

    [29] M Baranowski, P Plochocka. Excitons in metal-halide perovskites. Adv Energy Mater, 10, 1903659(2020).

    [30] L Adamska, P Umari. Bethe-Salpeter equation approach with electron-phonon coupling for exciton binding energies. Phys Rev B, 103, 075201(2021).

    [31] T A Huang, M Zacharias, D K Lewis et al. Exciton–phonon interactions in monolayer germanium selenide from first principles. J Phys Chem Lett, 12, 3802(2021).

    [32] S Shree, M Semina, C Robert et al. Observation of exciton-phonon coupling in MoSe2 monolayers. Phys Rev B, 98, 035302(2018).

    [33] T D Lee, F E Low, D Pines. The motion of slow electrons in a polar crystal. Phys Rev, 90, 297(1953).

    [34] W J Huybrechts. Internal excited state of the optical polaron. J Phys C, 10, 3761(1977).

    [35] G Q Hai, F M Peeters, J T Devreese. Polaron energy and effective mass in a quantum well. Phys Rev B, 42, 11063(1990).

    [36] D S Chuu, Y C Lou. Exciton binding energy and subband structures of GaAs/AlxGa1–xAs superlattices. Phys Rev B, 43, 14504(1991).

    [37] W Liu. Fundamentals of III-V devices: HBTs, MESFETs, and HFETs/HEMTs. Wiley(1999).

    Yong Sun, Wei Zhang, Shuang Han, Ran An, Xin-Sheng Tang, Xin-Lei Yu, Xiu-Juan Miao, Xin-Jun Ma, Xianglian, Pei-Fang Li, Cui-Lan Zhao, Zhao-Hua Ding, Jing-Lin Xiao. Behavior of exciton in direct−indirect band gap AlxGa1−xAs crystal lattice quantum wells[J]. Journal of Semiconductors, 2024, 45(3): 032701
    Download Citation