• Photonics Research
  • Vol. 10, Issue 4, 913 (2022)
Zhen Zhen1、2, Si-Yue Jin1、2, Ren Jie1、2, Hai-Yao Liang1, and Xing-Sheng Xu1、2、*
Author Affiliations
  • 1State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.1364/PRJ.448781 Cite this Article Set citation alerts
    Zhen Zhen, Si-Yue Jin, Ren Jie, Hai-Yao Liang, Xing-Sheng Xu. Strong coupling between colloidal quantum dots and a microcavity with hybrid structure at room temperature[J]. Photonics Research, 2022, 10(4): 913 Copy Citation Text show less
    References

    [1] A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, G. Abstreiter. Coherent properties of a two-level system based on a quantum-dot photodiode. Nature, 418, 612-614(2002).

    [2] S. Stufler, P. Ester, A. Zrenner, M. Bichler. Quantum optical properties of a single InxGa1-xAs-GaAs quantum dot two-level system. Phys. Rev. B, 72, 121301(2005).

    [3] T. Guenther, C. Lienau, T. Elsaesser, M. Glanemann, V. M. Axt, T. Kuhn, S. Eshlaghi, A. D. Wieck. Erratum: coherent nonlinear optical response of single quantum dots studied by ultrafast near-field spectroscopy. Phys. Rev. Lett., 89, 179901(2002).

    [4] H. Takagi, T. Nakaoka, K. Watanabe, N. Kumagai, Y. Arakawa. Coherently driven semiconductor quantum dot at a telecommunication wavelength. Opt. Express, 16, 13949-13954(2008).

    [5] A. L. Efros, M. Rosen. Random telegraph signal in the photoluminescence intensity of a single quantum dot. Phys. Rev. Lett., 78, 1110-1113(1997).

    [6] C. Galland, Y. Ghosh, A. Steinbrück, M. Sykora, J. A. Hollingsworth, V. I. Klimov, H. Htoon. Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots. Nature, 479, 203-207(2011).

    [7] M. Kuno, D. P. Fromm, H. F. Hamann, A. Gallagher, D. J. Nesbitt. Nonexponential ‘blinking’ kinetics of single CdSe quantum dots: a universal power law behavior. J. Chem. Phys., 112, 3117-3120(2000).

    [8] H. Gross, J. M. Hamm, T. Tufarelli, O. Hess, B. Hecht. Near-field strong coupling of single quantum dots. Sci. Adv., 4, eaar4906(2018).

    [9] Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, S. Noda. Strong coupling between distant photonic nanocavities and its dynamic control. Nat. Photonics, 6, 56-61(2012).

    [10] J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletic, M. D. Lukin. Coupling a single trapped atom to a nanoscale optical cavity. Science, 340, 1202-1205(2013).

    [11] M. Keller, B. Lange, K. Hayasaka, W. Lange, H. Walther. Deterministic coupling of single ions to an optical cavity. Appl. Phys. B, 76, 125-128(2003).

    [12] H. X. Leng, B. Szychowski, M. C. Daniel, M. Pelton. Strong coupling and induced transparency at room temperature with single quantum dots and gap plasmons. Nat. Commun., 9, 4012(2018).

    [13] J. Vuckovic, Y. Yamamoto. Photonic crystal microcavities for cavity quantum electrodynamics with a single quantum dot. Appl. Phys. Lett., 82, 2374-2376(2003).

    [14] G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, A. Scherer. Vacuum Rabi splitting in semiconductors. Nat. Phys., 2, 81-90(2006).

    [15] X. C. Zhao, Y. H. Yan, Z. Z. Cui, F. Liu, S. W. Wang, L. X. Sun, Y. W. Chen, W. Lu. Realization of strong coupling between 2D excitons and cavity photons at room temperature. Opt. Lett., 45, 6571-6574(2020).

    [16] L. C. Flatten, S. Christodoulou, R. K. Patel, A. Buccheri, D. M. Coles, B. P. L. Reid, R. A. Taylor, I. Moreels, J. M. Smith. Strong exciton–photon coupling with colloidal nanoplatelets in an open microcavity. Nano Lett., 16, 7137-7141(2016).

    [17] R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, J. J. Baumberg. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature, 535, 127-130(2016).

    [18] M. Wersäll, J. Cuadra, T. J. Antosiewicz, S. Balci, T. Shegai. Observation of mode splitting in photoluminescence of individual plasmonic nanoparticles strongly coupled to molecular excitons. Nano Lett., 17, 551-558(2017).

    [19] G. L. Liu, Y.-T. Long, Y. Choi, T. Kang, L. P. Lee. Quantized plasmon quenching dips nanospectroscopy via plasmon resonance energy transfer. Nat. Methods, 4, 1015-1017(2007).

    [20] X. Wu, S. K. Gray, M. Pelton. Quantum-dot-induced transparency in a nanoscale plasmonic resonator. Opt. Express, 18, 23633-23645(2010).

    [21] Z. J. Yang, T. J. Antosiewicz, T. Shegai. Role of material loss and mode volume of plasmonic nanocavities for strong plasmon-exciton interactions. Opt. Express, 24, 20373-20381(2016).

    [22] J. Bellessa, C. Bonnand, J. C. Plenet, J. Mugnier. Strong coupling between surface plasmons and excitons in an organic semiconductor. Phys. Rev. Lett., 93, 036404(2004).

    [23] J. R. Tischler, M. S. Bradley, V. Bulović, J. H. Song, A. Nurmikko. Strong coupling in a microcavity LED. Phys. Rev. Lett., 95, 036401(2005).

    [24] V. M. Agranovich, M. Litinskaia, D. G. Lidzey. Cavity polaritons in microcavities containing disordered organic semiconductors. Phys. Rev. B, 67, 085311(2003).

    [25] T. Schwartz, J. A. Hutchison, J. Léonard, C. Genet, S. Haacke, T. W. Ebbesen. Polariton dynamics under strong light–molecule coupling. ChemPhysChem, 14, 125-131(2013).

    [26] J. V. Neumann, E. Wigner. On some peculiar discrete eigenvalues. Phys. Z., 30, 465-467(1929).

    [27] X. Gao, B. Zhen, M. Soljačić, H. Chen, C. W. Hsu. Bound states in the continuum in fiber Bragg gratings. ACS Photon., 6, 2996-3002(2019).

    [28] D. C. Marinica, A. G. Borisov, S. V. Shabanov. Bound states in the continuum in photonics. Phys. Rev. Lett., 100, 183902(2008).

    [29] C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, M. Soljačić. Observation of trapped light within the radiation continuum. Nature, 499, 188-191(2013).

    [30] A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, B. Kanté. Lasing action from photonic bound states in continuum. Nature, 541, 196-199(2017).

    [31] C. Zou, J. Cui, F. Sun, X. Xiong, X. Zou, Z. Han, G. Guo. Guiding light through optical bound states in the continuum for ultrahigh-Q microresonators. Laser Photon. Rev., 9, 114-119(2015).

    [32] X. Xu, S. Jin. Strong coupling of single quantum dots with low-refractive-index/high-refractive-index materials at room temperature. Sci. Adv., 6, eabb3095(2020).

    [33] Z. Yu, X. Xi, J. Ma, H. K. Tsang, C. Zou, X. Sun. Photonic integrated circuits with bound states in the continuum. Optica, 6, 1342-1348(2019).

    [34] Thermo Fisher. The Molecular Probes Handbook, Qdot Nanocrystals, Section 6.6.

    [35] T. H. Stievater, X. Li, D. G. Steel, D. Gammon, D. S. Katzer, D. Park, C. Piermarocchi, L. J. Sham. Rabi oscillations of excitons in single quantum dots. Phys. Rev. Lett., 87, 133603(2001).

    [36] A. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, M. Bawendi. Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: dark and bright exciton states. Phys. Rev. B, 54, 4843-4856(1996).

    [37] J. Wiersig. Formation of long-lived, scarlike modes near avoided resonance crossings in optical microcavities. Phys. Rev. Lett., 97, 253901(2006).

    [38] J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel. Strong coupling in a single quantum dot-semiconductor microcavity system. Nature, 432, 197-200(2004).

    [39] E. Melik-Gaykazyan, K. Koshelev, J. H. Choi, S. S. Kruk, A. Bogdanov, H. G. Park, Y. Kivshar. From Fano to quasi-BIC resonances in individual dielectric nanoantennas. Nano Lett., 21, 1765-1771(2021).

    [40] K. Koshelev, S. Kruk, E. Melik-Gaykazyan, J. H. Choi, A. Bogdanov, H. G. Park, Y. Kivshar. Subwavelength dielectric resonators for nonlinear nanophotonics. Science, 367, 288-292(2020).

    Zhen Zhen, Si-Yue Jin, Ren Jie, Hai-Yao Liang, Xing-Sheng Xu. Strong coupling between colloidal quantum dots and a microcavity with hybrid structure at room temperature[J]. Photonics Research, 2022, 10(4): 913
    Download Citation