• Photonics Research
  • Vol. 10, Issue 4, 989 (2022)
Lingxiao Shan1, Juanjuan Ren1, Qi Zhang1, Qi Liu1、2, Yun Ma1, Qihuang Gong1、2、3、4, and Ying Gu1、2、3、4、*
Author Affiliations
  • 1State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, China
  • 2Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter & Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China
  • 3Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
  • 4Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, China
  • show less
    DOI: 10.1364/PRJ.449106 Cite this Article Set citation alerts
    Lingxiao Shan, Juanjuan Ren, Qi Zhang, Qi Liu, Yun Ma, Qihuang Gong, Ying Gu. Generation and modulation of non-classical light in a strongly coupled photon–emitter system[J]. Photonics Research, 2022, 10(4): 989 Copy Citation Text show less
    References

    [1] G. Tóth, I. Apellaniz. Quantum metrology from a quantum information science perspective. J. Phys. A, 47, 424006(2014).

    [2] H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X.-Y. Yang, W.-J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N.-L. Liu, C.-Y. Lu, J.-W. Pan. Quantum computational advantage using photons. Science, 370, 1460-1463(2020).

    [3] H. Wang, Y.-M. He, T.-H. Chung, H. Hu, Y. Yu, S. Chen, X. Ding, M.-C. Chen, J. Qin, X. Yang, R.-Z. Liu, Z.-C. Duan, J.-P. Li, S. Gerhardt, K. Winkler, J. Jurkat, L.-J. Wang, N. Gregersen, Y.-H. Huo, Q. Dai, S. Yu, S. Höfling, C.-Y. Lu, J.-W. Pan. Towards optimal single-photon sources from polarized microcavities. Nat. Photonics, 13, 770-775(2019).

    [4] J. Liu, R. Su, Y. Wei, B. Yao, S. F. Covre da Silva, Y. Yu, J. Iles-Smith, K. Srinivasan, A. Rastelli, J. Li, X. Wang. A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability. Nat. Nanotechnol., 14, 586-593(2019).

    [5] M. O. Scully, M. S. Zubairy. Quantum Optics(1997).

    [6] H. J. Carmichael. Statistical Methods in Quantum Optics, 2(2002).

    [7] E. Z. Casalengua, J. C. L. Carreño, F. P. Laussy, E. del Valle. Conventional and unconventional photon statistics. Laser Photon. Rev., 14, 1900279(2020).

    [8] E. Z. Casalengua, J. C. L. Carreño, F. P. Laussy, E. del Valle. Tuning photon statistics with coherent fields. Phys. Rev. A, 101, 063824(2020).

    [9] O. Benson. Assembly of hybrid photonic architectures from nanophotonic constituents. Nature, 480, 193-199(2011).

    [10] A. Imamoğlu, H. Schmidt, G. Woods, M. Deutsch. Strongly interacting photons in a nonlinear cavity. Phys. Rev. Lett., 79, 1467-1470(1997).

    [11] A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, J. Vučković. Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade. Nat. Phys., 4, 859-863(2008).

    [12] M. G. Raizen, L. A. Orozco, M. Xiao, T. L. Boyd, H. J. Kimble. Squeezed-state generation by the normal modes of a coupled system. Phys. Rev. Lett., 59, 198-201(1987).

    [13] T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature, 432, 200-203(2004).

    [14] J. Topolancik, B. Ilic, F. Vollmer. Experimental observation of strong photon localization in disordered photonic crystal waveguides. Phys. Rev. Lett., 99, 253901(2007).

    [15] I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, J. Vučković. Controlled phase shifts with a single quantum dot. Science, 320, 769-772(2008).

    [16] A. Rundquist, M. Bajcsy, A. Majumdar, T. Sarmiento, K. Fischer, K. G. Lagoudakis, S. Buckley, A. Y. Piggott, J. Vučković. Nonclassical higher-order photon correlations with a quantum dot strongly coupled to a photonic-crystal nanocavity. Phys. Rev. A, 90, 023846(2014).

    [17] K. A. Fischer, K. Müller, A. Rundquist, T. Sarmiento, A. Y. Piggott, Y. Kelaita, C. Dory, K. G. Lagoudakis, J. Vučković. Self-homodyne measurement of a dynamic Mollow triplet in the solid state. Nat. Photonics, 10, 163-166(2016).

    [18] R. Chikkaraddy, B. De Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, J. J. Baumberg. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature, 535, 127-130(2016).

    [19] J. Ren, Y. Gu, D. Zhao, F. Zhang, T. Zhang, Q. Gong. Evanescent-vacuum-enhanced photon-exciton coupling and fluorescence collection. Phys. Rev. Lett., 118, 073604(2017).

    [20] Z. Qian, L. Shan, X. C. Zhang, Q. Liu, Y. Ma, Q. H. Gong, Y. Gu. Spontaneous emission in micro- or nanophotonic structures. PhotoniX, 2, 21(2021).

    [21] N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, P. Senellart. Near-optimal single-photon sources in the solid state. Nat. Photonics, 10, 340-345(2016).

         Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, J.-W. Pan. On-demand semiconductor single-photon source with near-unity indistinguishability. Nat. Nanotechnol., 8, 213-217(2013).

    [23] K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, A. Imamoğlu. Quantum nature of a strongly coupled single quantum dot-cavity system. Nature, 445, 896-899(2007).

    [24] V. Loo, L. Lanco, A. Lemàtre, I. Sagnes, O. Krebs, P. Voisin, P. Senellart. Quantum dot-cavity strong-coupling regime measured through coherent reflection spectroscopy in a very high-Q micropillar. Appl. Phys. Lett., 97, 241110(2010).

    [25] R. Ohta, Y. Ota, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, Y. Arakawa. Strong coupling between a photonic crystal nanobeam cavity and a single quantum dot. Appl. Phys. Lett., 98, 173104(2011).

    [26] J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel. Strong coupling in a single quantum dot–semiconductor microcavity system. Nature, 432, 197-200(2004).

    [27] J. Kasprzak, S. Reitzenstein, E. A. Muljarov, C. Kistner, C. Schneider, M. Strauss, S. Höfling, A. Forchel, W. Langbein. Up on the Jaynes–Cummings ladder of a quantum-dot/microcavity system. Nat. Mater., 9, 304-308(2010).

    [28] H. Wang, J. Qin, S. Chen, M.-C. Chen, X. You, X. Ding, Y.-H. Huo, Y. Yu, C. Schneider, S. Höfling, M. Scully, C.-Y. Lu, J.-W. Pan. Observation of intensity squeezing in resonance fluorescence from a solid-state device. Phys. Rev. Lett., 125, 153601(2020).

    [29] E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J. M. Gérard, J. Bloch. Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. Phys. Rev. Lett., 95, 067401(2005).

    [30] K. Srinivasan, O. Painter. Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system. Nature, 450, 862-865(2007).

    [31] B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, K. Vahala. High-Q surface-plasmon-polariton whispering-gallery microcavity. Nature, 457, 455-458(2009).

    [32] A. Huck, S. Smolka, P. Lodahl, A. S. Sørensen, A. Boltasseva, J. Janousek, U. L. Andersen. Demonstration of quadrature-squeezed surface plasmons in a gold waveguide. Phys. Rev. Lett., 102, 246802(2009).

    [33] K. Santhosh, O. Bitton, L. Chuntonov, G. Haran. Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit. Nat. Commun., 7, 11823(2016).

    [34] R. Liu, Z.-K. Zhou, Y.-C. Yu, T. Zhang, H. Wang, G. Liu, Y. Wei, H. Chen, X.-H. Wang. Strong light-matter interactions in single open plasmonic nanocavities at the quantum optics limit. Phys. Rev. Lett., 118, 237401(2017).

    [35] R. Bose, D. Sridharan, H. Kim, G. S. Solomon, E. Waks. Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity. Phys. Rev. Lett., 108, 227402(2012).

    [36] A. Reinhard, T. Volz, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, A. Imamoğlu. Strongly correlated photons on a chip. Nat. Photonics, 6, 93-96(2012).

    [37] T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, A. Imamoğlu. Ultrafast all-optical switching by single photons. Nat. Photonics, 6, 605-609(2012).

    [38] D. Englund, A. Majumdar, M. Bajcsy, A. Faraon, P. Petroff, J. Vučković. Ultrafast photon-photon interaction in a strongly coupled quantum dot-cavity system. Phys. Rev. Lett., 108, 093604(2012).

    [39] K. Müller, A. Rundquist, K. A. Fischer, T. Sarmiento, K. G. Lagoudakis, Y. A. Kelaita, C. Sánchez Muñoz, E. Del Valle, F. P. Laussy, J. Vučković. Coherent generation of nonclassical light on chip via detuned photon blockade. Phys. Rev. Lett., 114, 233601(2015).

    [40] H. Flayac, D. Gerace, V. Savona. An all-silicon single-photon source by unconventional photon blockade. Sci. Rep., 5, 11223(2015).

    [41] X.-L. Chu, S. Götzinger, V. Sandoghdar. A single molecule as a high-fidelity photon gun for producing intensity-squeezed light. Nat. Photonics, 11, 58-62(2017).

    [42] C. H. H. Schulte, J. Hansom, A. E. Jones, C. Matthiesen, C. Le Gall, M. Atatüre. Quadrature squeezed photons from a two-level system. Nature, 525, 222-225(2015).

    [43] H.-P. Gauggel, H. Artmann, C. Geng, F. Scholz, H. Schweizer. Wide-range tunability of GaInP-AlGaInP DFB lasers with superstructure gratings. IEEE Photon. Technol. Lett., 9, 14-16(1997).

    [44] F. Zhang, J. Ren, L. Shan, X. Duan, Y. Li, T. Zhang, Q. Gong, Y. Gu. Chiral cavity quantum electrodynamics with coupled nanophotonic structures. Phys. Rev. A, 100, 053841(2019).

    [45] P. Peng, Y.-C. Liu, D. Xu, Q.-T. Cao, G. Lu, Q. Gong, Y.-F. Xiao. Enhancing coherent light-matter interactions through microcavity-engineered plasmonic resonances. Phys. Rev. Lett., 119, 233901(2017).

    [46] H.-J. Chen. Auxiliary-cavity-assisted vacuum Rabi splitting of a semiconductor quantum dot in a photonic crystal nanocavity. Photon. Res., 6, 1171-1176(2018).

    [47] Y.-W. Lu, J.-F. Liu, Z. Liao, X.-H. Wang. Plasmonic-photonic cavity for high-efficiency single-photon blockade. Sci. China Phys. Mech. Astron., 64, 274212(2021).

    [48] P. B. Johnson, R. W. Christy. Optical constants of the noble metals. Phys. Rev. B, 6, 4370-4379(1972).

    [49] X. Shen, C. Song, J. Wang, D. Shi, Z. Wang, N. Liu, B. Ding. Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures. J. Am. Chem. Soc., 134, 146-149(2011).

    [50] D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, J. Vučković. Controlling cavity reflectivity with a single quantum dot. Nature, 450, 857-861(2007).

    [51] L. Chang, W. Xie, H. Shu, Q.-F. Yang, B. Shen, A. Boes, J. D. Peters, W. Jin, C. Xiang, S. Liu, G. Moille, S.-P. Yu, X. Wang, K. Srinivasan, S. B. Papp, K. Vahala, J. E. Bowers. Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators. Nat. Commun., 11, 1331(2020).

    [52] F. P. Laussy, E. del Valle, M. Schrapp, A. Laucht, J. J. Finley. Climbing the Jaynes–Cummings ladder by photon counting. J. Nanophoton., 6, 061803(2012).

    [53] J. Johansson, P. Nation, F. Nori. QuTiP: an open-source python framework for the dynamics of open quantum systems. Comput. Phys. Commun., 183, 1760-1772(2012).

    [54] J. Johansson, P. Nation, F. Nori. QuTiP 2: a Python framework for the dynamics of open quantum systems. Comput. Phys. Commun., 184, 1234-1240(2013).

    [55] R. Trivedi, K. A. Fischer, J. Vučković, K. Müller. Generation of non-classical light using semiconductor quantum dots. Adv. Quantum. Technol., 3, 1900007(2020).

    [56] M. Arcari, I. Söllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, P. Lodahl. Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide. Phys. Rev. Lett., 113, 093603(2014).

    [57] A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, W. E. Moerner. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat. Photonics, 3, 654-657(2009).

    [58] F. Zhang, J. Ren, X. Duan, Z. Chen, Q. Gong, Y. Gu. Evanescent-field-modulated two-qubit entanglement in an emitters-plasmon coupled system. J. Phys. Condens. Matter, 30, 305302(2018).

    [59] F. Zhang, D. Zhao, X. Hu, Q. Gong, Y. Gu. Quantum discord modulated by detuning in a plasmonic nanosystem. J. Phys. B, 52, 115402(2019).

    [60] V. S. C. Manga Rao, S. Hughes. Numerical study of exact Purcell factors in finite-size planar photonic crystal waveguides. Opt. Lett., 33, 1587-1589(2008).

    [61] T. Van Mechelen, Z. Jacob. Universal spin-momentum locking of evanescent waves. Optica, 3, 118-126(2016).

    [62] H. Thyrrestrup, L. Sapienza, P. Lodahl. Extraction of the β-factor for single quantum dots coupled to a photonic crystal waveguide. Appl. Phys. Lett., 96, 231106(2010).

    [63] C. Li, X. Zhang, J. W. Li, T. Fang, X. W. Dong. The challenges of modern computing and new opportunities for optics. PhotoniX, 2, 20(2021).

    [64] D. Zhao, Y. Gu, J. Wu, J. Zhang, T. Zhang, B. D. Gerardot, Q. Gong. Quantum-dot gain without inversion: effects of dark plasmon-exciton hybridization. Phys. Rev. B, 89, 245433(2014).

    [65] D. Zhao, J. Wu, Y. Gu, Q. Gong. Tailoring double Fano profiles with plasmon-assisted quantum interference in hybrid exciton-plasmon system. Appl. Phys. Lett., 105, 111112(2014).

    [66] P. Lodahl, S. Mahmoodian, S. Stobbe. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys., 87, 347-400(2015).

    Lingxiao Shan, Juanjuan Ren, Qi Zhang, Qi Liu, Yun Ma, Qihuang Gong, Ying Gu. Generation and modulation of non-classical light in a strongly coupled photon–emitter system[J]. Photonics Research, 2022, 10(4): 989
    Download Citation