• Journal of Semiconductors
  • Vol. 40, Issue 7, 071901 (2019)
Xin Cao, Michael Zopf, and Fei Ding
Author Affiliations
  • Institute for Solid State Physics, Leibniz University of Hannover, Appelstraẞe 2, 30167 Hannover, Germany
  • show less
    DOI: 10.1088/1674-4926/40/7/071901 Cite this Article
    Xin Cao, Michael Zopf, Fei Ding. Telecom wavelength single photon sources[J]. Journal of Semiconductors, 2019, 40(7): 071901 Copy Citation Text show less
    References

    [1] D Deutsch. Quantum theory, the Church-Turing principle and the universal quantum computer. Proc R Soc A, 400, 97(1985).

    [2] R Kaltenbaek, P Walther, F Tiefenbacher et al. High-speed linear optics quantum computing using active feed-forward. Nature, 445, 65(2007).

    [3] V Scarani, H Bechmann-Pasquinucci, N J Cerf et al. The security of practical quantum key distribution. Rev Mod Phys, 81, 1301(2009).

    [4] C H Bennett, G Brassard. Quantum cryptography: Public key distribution and coin tossing. Theor Comput Sci, 560, 7(2014).

    [5] E Knill, R Laflamme, G J Milburn. A scheme for efficient quantum computation with linear optics. Nature, 409, 46(2001).

    [6] M Müller, H Vural, C Schneider et al. Quantum-dot single-photon sources for entanglement enhanced interferometry. Phys Rev Lett, 118, 257402(2017).

    [7] H J Kimble. The quantum internet. Nature, 453, 1023(2008).

    [8] J F Clauser. Experimental distinction between the quantum and classical field-theoretic predictions for the photoelectric effects. Phys Rev D, 9, 853(1974).

    [9] C W Chou, S V Polyakov, A Kuzmich et al. Single-photon generation from stored excitation in an atomic ensemble. Phys Rev Lett, 92, 213601(2004).

    [10] M Keller, B Lange, K Hayasaka et al. Continuous generation of single photons with controlled waveform in an ion-trap cavity system. Nature, 431, 1075(2004).

    [11] B Lounis, W E Moerner. Single photons on demand from a single molecule at room temperature. Nature, 407, 491(2000).

    [12] R Alléaume, F Treussart, J M Courty et al. Photon statistics characterization of a single-photon source. New J Phys, 6, 85(2004).

    [13] P Michler, A Kiraz, C Becher et al. A quantum dot single-photon turnstile device. Science, 290, 2282(2000).

    [14] R Brouri, A Beveratos, J P Poizat et al. Photon antibunching in the fluorescence of individual color centers in diamond. Opt Lett, 25, 1294(2000).

    [15] E Neu, D Steinmetz, J Riedrich-Möller et al. Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium. New J Phys, 13, 025012(2011).

    [16] Q Wang, W Chen, G Xavier et al. Experimental decoy-state quantum key distribution with a sub-poissionian heralded single-photon source. Phys Rev Lett, 100, 090501(2008).

    [17] M D Eisaman, J Fan, A Migdall et al. Single-photon sources and detectors. Rev Sci Instrum, 82, 071101(2011).

    [18] C H Bennett, F Bessette, G Brassard et al. Experimental quantum cryptography. J Cryptol, 5, 3(1992).

    [19] R J Hughes, W T Buttler, P G Kwiat et al. Free-space quantum key distribution in daylight. J Mod Opt, 47, 549(2000).

    [20] R J Hughes, J E Nordholt, D Derkacs et al. Practical free-space quantum key distribution over 10 km in daylight and at night. New J Phys, 4, 343(2002).

    [21] S K Liao, H L Yong, C Liu et al. Long-distance free-space quantum key distribution in daylight towards inter-satellite communication. Nat Photonics, 11, 509(2017).

    [22]

    [23] B Lounis, M Orrit. Single-photon sources. Rep Prog Phys, 68, 1129(2005).

    [24] P Senellart, G Solomon, A White. High-performance semiconductor quantum-dot single-photon sources. Nat Nanotechnol, 12, 1026(2017).

    [25] R Hanbury Brown, R Q Twiss. Correlation between photons in two coherent beams of light. Nature, 177, 27(1956).

    [26] R T Willis, F E Becerra, L A Orozco et al. Photon statistics and polarization correlations at telecommunications wavelengths from a warm atomic ensemble. Opt Express, 19, 14632(2011).

    [27] M Bock, A Lenhard, C Chunnilall et al. Highly efficient heralded single-photon source for telecom wavelengths based on a PPLN waveguide. Opt Express, 24, 23992(2016).

    [28] T Miyazawa, K Takemoto, Y Nambu et al. Single-photon emission at 1.5 μm from an InAs / InP quantum dot with highly suppressed multi-photon emission probabilities. Appl Phys Lett, 109, 132106(2016).

    [29] J Wang, Y Zhou, Z Wang et al. Bright room temperature single photon source at telecom range in cubic silicon carbide. Nat Commun, 9, 4106(2018).

    [30] X He, N F Hartmann, X Ma et al. Tunable room-temperature single-photon emission at telecom wavelengths from sp3 defects in carbon nanotubes. Nat Photonics, 11, 577(2017).

    [31] Y Zhou, Z Wang, A Rasmita et al. Room temperature solid-state quantum emitters in the telecom range. Sci Adv, 4, eaar3580(2018).

    [32] R Kolesov, K Xia, R Reuter et al. Optical detection of a single rare-earth ion in a crystal. Nat Commun, 3, 1029(2012).

    [33] T Utikal, E Eichhammer, L Petersen et al. Spectroscopic detection and state preparation of a single praseodymium ion in a crystal. Nat Commun, 5, 3627(2014).

    [34] I Nakamura, T Yoshihiro, H Inagawa et al. Spectroscopy of single Pr3+ ion in LaF3 crystal at 1.5 K. Sci Rep, 4, 7364(2014).

    [35] C Yin, M Rancic, G G de Boo et al. Optical addressing of an individual erbium ion in silicon. Nature, 497, 91(213).

    [36] T Chanelière, D N Matsukevich, S D Jenkins et al. Quantum telecommunication based on atomic cascade transitions. Phys Rev Lett, 96, 093604(2006).

    [37] S D Jenkins, D N Matsukevich, T Chanelière et al. Quantum telecommunication with atomic ensembles. J Opt Soc Am B, 24, 316(2007).

    [38] X Bao, A Reingruber, P Dietrich et al. Efficient and long-lived quantum memory with cold atoms inside a ring cavity. Nat Phys, 8, 517(2012).

    [39] E Saglamyurek, J Jin, V B Verma et al. Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre. Nat Photonics, 9, 83(2015).

    [40] F Bussières, C Clausen, A Tiranov et al. Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory. Nat Photonics, 8, 775(2014).

    [41] N Maring, P Farrera, K Kutluer et al. Photonic quantum state transfer between a cold atomic gas and a crystal. Nature, 551, 485(2017).

    [42] J Mckeever, A Boca, A D Boozer et al. Deterministic generation of single photons from one atom trapped in a cavity. Science, 303, 1992(2004).

    [43] D N Klyshko, A N Penin, B F Polkovnikov. Parametric luminescence and light scattering by polaritons. JETP Lett, 11, 5(1970).

    [44] P Production. Observation of simultaneity in parametric production of optical photon pairs. Phys Rev Lett, 25, 84(1970).

    [45] J W Pan, Z B Chen, C Y Lu et al. Multiphoton entanglement and interferometry. Rev Mod Phys, 84, 777(2012).

    [46] G Fujii, N Namekata, M Motoya et al. Bright narrowband source of photon pairs at optical telecommunication wavelengths using a type-II periodically poled lithium niobate waveguide. Opt Express, 15, 12769(2007).

    [47] Y Xue, A Yoshizawa, H Tsuchida. Polarization-based entanglement swapping at the telecommunication wavelength using spontaneous parametric down-conversion photon-pair sources. Phys Rev A, 85, 032337(2012).

    [48] R Lo, H Jiang, S Rogers et al. On-chip second-harmonic generation and broadband parametric down-conversion in a lithium niobate microresonator. Opt Express, 25, 24531(2017).

    [49] R Jin, R Shimizu, K Wakui et al. Widely tunable single photon source with high purity at telecom wavelength. Opt Express, 21, 10659(2013).

    [50] S Zaske, A Lenhard, C Becher. Efficient frequency downconversion at the single photon level from the red spectral range to the telecommunications C-band. Opt Express, 19, 12825(2011).

    [51] J Fekete, D Rieländer, M Cristiani et al. Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks. Phys Rev Lett, 110, 220502(2013).

    [52] S Zaske, A Lenhard, C A Keßler et al. Visible-to-telecom quantum frequency conversion of light from a single quantum emitter. Phys Rev Lett, 109, 147404(2012).

    [53] S Fasel, O Alibart, S Tanzilli et al. High-quality asynchronous heralded single-photon source at telecom wavelength High-quality asynchronous heralded single-photon source at telecom wavelength. New J Phys, 6, 163(2004).

    [54] F Wolfgramm, X Xing, A Cerè et al. Bright filter-free source of indistinguishable photon pairs. Opt Express, 16, 18145(2008).

    [55] A Ahlrichs, O Benson. Bright source of indistinguishable photons based on cavity-enhanced parametric down- conversion utilizing the cluster effect parametric down-conversion utilizing the cluster effect. Appl Phys Lett, 108, 021111(2016).

    [56] C Xiong, X Zhang, Z Liu et al. Active temporal multiplexing of indistinguishable heralded single photons. Nat Commun, 7, 10853(2016).

    [57] X Wang, L Chen, W Li et al. Experimental ten-photon entanglement. Phys Rev Lett, 117(2016).

    [58] E Meyer-Scott, N Prasannan, C Eigner et al. High-performance source of spectrally pure, polarization entangled photon pairs based on hybrid integrated-bulk optics. Opt Express, 26, 32475(2018).

    [59] C I Osorio, N Sangouard, R T Thew. On the purity and indistinguishability of down-converted photons. J Phys B, 46, 055501(2013).

    [60] L A Ngah, O Alibart, L Labonté et al. Ultra-fast heralded single photon source based on telecom technology. Lasers Photonics Rev, 6, 1(2015).

    [61] R Keil, M Zopf, Y Chen et al. Solid-state ensemble of highly entangled photon sources at rubidium atomic transitions. Nat Commun, 8, 15501(2017).

    [62] P Atkinson, E Zallo, O G Schmidt. Independent wavelength and density control of uniform GaAs/AlGaAs quantum dots grown by infilling self-assembled nanoholes. J Appl Phys, 112, 054303(2012).

    [63] Y H Huo, A Rastelli, O G Schmidt. Ultra-small excitonic fine structure splitting in highly symmetric quantum dots on GaAs (001) substrate. Appl Phys Lett, 102, 152105(2013).

    [64] J Y Marzin, J M Gérard, A Izrael et al. Photoluminescence of single inas quantum dots obtained by self-organized growth on GaAs. Phys Rev Lett, 73, 716(2000).

    [65] M Grundmann, O Stier, D Bimberg. InAs/GaAs pyramidal quantum dots: Strain distribution, optical phonons, and electronic structure. Phys Rev B, 52, 11969(1995).

    [66] P W Fry, I E Itskevich, D J Mowbray et al. Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots. Phys Rev Lett, 84, 733(2000).

    [67] R Heitz, A Kalburge, Q Xie et al. Excited states and energy relaxation in stacked InAs / GaAs quantum dots. Phys Rev B, 57, 9050(1998).

    [68] A Ugur, F Hatami, W T Masselink et al. Single-dot optical emission from ultralow density well-isolated InP quantum dots. Appl Phys Lett, 93, 143111(2008).

    [69] F Hatami, W T Masselink, L Schrottke et al. InP quantum dots embedded in GaP: Optical properties and carrier dynamics. Phys Rev B, 67, 085306(2003).

    [70] F Hatami, V Lordi, J S Harris et al. Red light-emitting diodes based on InP/GaP quantum dots. J Appl Phys, 97, 096106(2005).

    [71] Y Song, P J Simmonds, M L Lee. Self-assembled GaP quantum dots on Self-assembled In0.5Ga0.5As quantum dots on GaP. Appl Phys Lett, 97, 223110(2013).

    [72] T Nguyen Thanh, C Robert, C Cornet et al. Room temperature photoluminescence of high density (In, Ga)As/GaP quantum dots. Appl Phys Lett, 99, 143123(2011).

    [73] J Oshinowo, M Nishioka, S Ishida et al. Highly uniform InGaAs / GaAs quantum dots (~15 nm) by metalorganic chemical vapor deposition. Appl Phys Lett, 65, 1421(1994).

    [74] A J Ramsay, A V Gopal, E M Gauger et al. Damping of exciton rabi rotations by acoustic phonons in optically excited InGaAs/GaAs quantum dots. Phys Rev Lett, 104, 017402(2010).

    [75] R Heitz, M Veit, N N Ledentsov et al. Energy relaxation by multiphonon processes in InAs / GaAs quantum dots. Phys Rev B, 56, 10435(1997).

    [76] L Seravalli, G Trevisi, P Frigeri et al. Single quantum dot emission at telecom wavelengths from metamorphic InAs/InGaAs nanostructures grown on GaAs substrates. Appl Phys Lett, 98, 173112(2011).

    [77] M Paul, F Olbrich, J Höschele et al. Single-photon emission at 1.55 μm from MOVPE-grown InAs quantum dots on InGaAs/ GaAs metamorphic buffers. Appl Phys Lett, 111, 033102(2017).

    [78] J Kettler, M Paul, F Olbrich et al. Single-photon and photon pair emission from MOVPE-grown In(Ga)As quantum dots: shifting the emission wavelength from 1.0 to 1.3 μm. Appl Phys B, 122, 48(2016).

    [79] V M Ustinov, N A Maleev, A E Zhukov et al. InAs / InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm. Appl Phys Lett, 74, 2815(1999).

    [80] F Olbrich, J Kettler, M Bayerbach et al. Temperature-dependent properties of single long-wavelength InGaAs quantum dots embedded in a strain reducing layer. J Appl Phys, 121, 184302(2017).

    [81] M Paul, J Kettler, K Zeuner et al. Metal-organic vapor-phase epitaxy-grown ultra-low density InGaAs/GaAs quantum dots exhibiting cascaded single-photon emission at 1.3 μm. Appl Phys Lett, 106, 122105(2015).

    [82] Z S Chen, B Ma, X J Shang et al. Bright single-photon source at 1.3 μm based on inas bilayer quantum dot in micropillar. Nanoscale Res Lett, 12, 2321(2017).

    [83] Z S Chen, B Ma, X J Shang, Y He et al. Telecommunication wavelength-band single-photon emission from single large InAs quantum dots nucleated on low-density seed quantum dots. Nanoscale Res Lett, 11, 1(2016).

    [84] M Benyoucef, M Yacob, J P Reithmaier et al. Telecom-wavelength (1.5 μm) single-photon emission from InP-based quantum dots. Appl Phys Lett, 103, 162101(2013).

    [85] K Takemoto, Y Sakuma, S Hirose et al. Observation of exciton transition in 1.3–1.55 μm band from single InAs/InP quantum dots in mesa structure. Jpn J Appl Phys, 43, 349(2004).

    [86] L Dusanowski, M Syperek, P Mrowinski et al. Single photon emission at 1.55 μm from charged and neutral exciton confined in a single quantum dash. Appl Phys Lett, 105(2014).

    [87] K Takemoto, M Takatsu, S Hirose et al. An optical horn structure for single- photon source using quantum dots at telecommunication wavelength. J Appl Phys, 101, 081720(2007).

    [88] Ł Dusanowski, M Syperek, J Misiewicz et al. Single-photon emission of InAs/InP quantum dashes at 1.55 μm and temperatures up to 80 K. Appl Phys Lett, 108, 163108(2016).

    [89] S Marcet, K Ohtani, H Ohno. Vertical electric field tuning of the exciton fine structure splitting and photon correlation measurements of GaAs quantum dot. Appl Phys Lett, 96, 101117(2010).

    [90] M Bayer, G Ortner, O Stern et al. Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots. Phys Rev B, 65, 195315(2002).

    [91] J Zhang, Y Huo, A Rastelli et al. Single photons on-demand from light-hole excitons in strain-engineered quantum dots. Nano Lett, 15, 422(2015).

    [92] Y Chen, J Zhang, M Zopf et al. Wavelength-tunable entangled photons from silicon-integrated III–V quantum dots. Nat Commun, 7, 10387(2016).

    [93] Y Zhang, Y Chen, M Mietschke et al. Monolithically integrated microelectromechanical systems for on-chip strain engineering of quantum dots. Nano Lett, 16, 5785(2016).

    [94]

    [95] L Balet, M Francardi, A Gerardino et al. Enhanced spontaneous emission rate from single InAs quantum dots in a photonic crystal nanocavity at telecom wavelengths. Appl Phys Lett, 91, 123115(2007).

    [96] M D Birowosuto, H Sumikura, S Matsuo et al. Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling. Sci Rep, 2, 321(2012).

    [97] Y Chen, M Zopf, R Keil et al. Highly-efficient extraction of entangled photons from quantum dots using a broadband optical antenna. Nat Commun, 9, 2994(2018).

    [98] P Mrowinski, G Sek. Modelling the enhancement of spectrally broadband extraction efficiency of emission from single InAs/InP quantum dots at telecommunication wavelengths. Phys B, 562, 141(2019).

    [99] N Srocka, A Musia, P I Schneider et al. Enhanced photon-extraction efficiency from InGaAs / GaAs quantum dots in deterministic photonic structures at 1.3 μm fabricated by in-situ electron-beam lithography. AIP Adv, 8, 085205(2018).

    [100] J Y Kim, T Cai, C J K Richardson et al. Two-photon interference from a bright single-photon source at telecom wavelengths. Optica, 3, 577(2016).

    [101] N T Son, P Carlsson, J ul Hassan et al. Divacancy in 4H-SiC. Phys Rev Lett, 96, 055501(2006).

    [102] B Magnusson, E Janzén. Optical Characterization of Deep Level Defects in SiC. Mater Sci Forum, 483–485, 341(2005).

    [103] S Lijima. Helical microtubules of graphitic carbon. Nature, 354, 56(1991).

    [104] A Högele, C Galland, M Winger et al. Photon antibunching in the photoluminescence spectra of a single carbon nanotube. Phys Rev Lett, 100, 1217401(2008).

    [105] J J Crochet, J G Duque, J H Werner et al. Disorder limited exciton transport in colloidal single-wall carbon nanotubes. Nano Lett, 12, 5091(2012).

    [106] X Ma, N F Hartmann, J K S Baldwin et al. Room-temperature single-photon generation from solitary dopants of carbon nanotubes. Nat Nanotechnol, 10, 671(2015).

    [107] S Ghosh, S M Bachilo, R A Simonette et al. Oxygen doping modifies near-infrared band gaps in fluorescent single-walled carbon nanotubes. Science, 330, 1656(2010).

    [108] X Ma, J K S Baldwin, N F Hartmann et al. Solid-state approach for fabrication of photostable, oxygen-doped carbon nanotubes. Adv Funct Mater, 25, 6157(2015).

    [109] X Ma, L Adamska, H Yamaguchi et al. Electronic structure and chemical. nature, of oxygen dopant states in carbon nanotubes. ACS Nano, 8, 10782(2014).

    [110] S Liao, W Cai, W Liu et al. Satellite-to-ground quantum key distribution. Nature, 549, 43(2017).

    [111] L C Comandar, B Fröhlich, M Lucamarini et al. Room temperature single-photon detectors for high bit rate quantum key distribution. Appl Phys Lett, 104, 021101(2014).

    [112] H Yin, T Chen, Z Yu et al. Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys Rev Lett, 117, 190501(2016).

    [113] M Lucamarini, Z L Yuan, J F Dynes et al. Overcoming the rate-distance limit of quantum key distribution without quantum repeaters. Nature, 557, 400(2018).

    [114] S Liao, W Cai, J Handsteiner et al. Satellite-relayed intercontinental quantum network. Phys Rev Lett, 120, 030501(2018).

    [115] C H Bennett, G Brassard, C Crepeau et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys Rev Lett, 70, 1895(1993).

    [116] D Bouwmeester, J Pan, K Mattle et al. Experimental quantum teleportation. Nature, 390, 575(1997).

    [117] Q Sun, Y Mao, S Chen et al. Quantum teleportation with independent sources and prior entanglement distribution over a network. Nat Photonics, 10, 671(2016).

    [118] R Valivarthi, G Puigibert, Q Zhou et al. Quantum teleportation across a metropolitan fibre network. Nat Photonics, 10, 676(2016).

    [119] J Yin, J Ren, H Lu et al. Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Nature, 488, 185(2012).

    [120] X Ma, T Herbst, T Scheidl et al. Quantum teleportation over 143 kilometres using active feed-forward. Nature, 489, 269(2012).

    [121] M Yang, L Li, K Yang et al. Ground-to-satellite quantum teleportation. Nature, 549, 70(2017).

    [122] T Müller, A B Krysa, J Huwer et al. A quantum light-emitting diode for the standard telecom window around 1,550nm. Nat Commun, 9, 862(2018).

    [123] M Zopf, T Macha, R Keil et al. Frequency feedback for two-photon interference from separate quantum dots. Phys Rev B, 98, 161302(2018).

    [124] O Gazzano, S M de Vasconcellos, C Arnold et al. Bright solid-state sources of indistinguishable single photons. Nat Commun, 4, 1425(2013).

    [125] M Toishi, D Englund, A Faraon et al. High-brightness single photon source from a quantum dot in a directional-emission nanocavity. Opt Express, 17, 14618(2009).

    Xin Cao, Michael Zopf, Fei Ding. Telecom wavelength single photon sources[J]. Journal of Semiconductors, 2019, 40(7): 071901
    Download Citation