• Journal of Semiconductors
  • Vol. 42, Issue 8, 081801 (2021)
Liang Guo1、2、3, Yanan Guo1、2、3, Junxi Wang1、2、3, and Tongbo Wei1、2、3
Author Affiliations
  • 1Research and Development Center for Semiconductor Lighting Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Beijing Engineering Research Center for the 3rd Generation Semiconductor Materials and Application, Beijing 100083, China
  • show less
    DOI: 10.1088/1674-4926/42/8/081801 Cite this Article
    Liang Guo, Yanan Guo, Junxi Wang, Tongbo Wei. Ultraviolet communication technique and its application[J]. Journal of Semiconductors, 2021, 42(8): 081801 Copy Citation Text show less

    Abstract

    With recent developments of deep ultraviolet (DUV) light-emitting diodes and solar-blind detectors, UV communication (UVC) shows great potential in replacing traditional wireless communication in more and more scenarios. Based on the atmospheric scattering of UV radiation, UVC has gained considerable attention due to its non-line-of-sight ability, omnidirectional communication links and low background noise. These advantages make UVC an ideal option for covert secure communication, especially for military communication. In this review, we present the history and working principle of UVC with a special focus on its light sources and detectors. Comprehensive comparison and application of its light sources and detectors are provided to the best of our knowledge. We further discuss the future application and outlook of UVC. Hopefully, this review will offer valuable insights into the future development of UVC.
    $I = {I_0}{{\rm e}^{ - \mu (\lambda )l}}.$(1)

    View in Article

    $\mu (\lambda ) = {\alpha _{{\rm a}}}(\lambda ) + {\alpha _{\rm m}}(\lambda ) + {\beta _{\rm a}}(\lambda ) + {\beta _{\rm m}}(\lambda ),$(2)

    View in Article

    ${P_{{\rm{r,LOS}}}} = {P_{\rm t}}\left(\frac{{{{\rm e}^{ - {K_{\rm e}}{r_1}}}}}{{r_1^2}}\right){\left(\frac{\lambda }{{4\pi {r_2}}}\right)^2}{{\rm e}^{ - {K_{\rm e}}{r_2}}} = \frac{{{P_{\rm t}}{A_{\rm r}}}}{{4\pi r_1^2r_2^2}}{{\rm e}^{ - {K_{\rm e}}({r_1} + {r_2})}}.$(3)

    View in Article

    ${h_1} = \frac{{r\sin ({\Phi _2}/2)}}{{\sin ({\Phi _1}/2 + {\Phi _2}/2)}},$(4)

    View in Article

    ${h_2} = \frac{{r\sin ({\Phi _1}/2)}}{{\sin ({\Phi _1}/2 + {\Phi _2}/2)}},$(5)

    View in Article

    ${r_1} = {h_1}\cos ({\Phi _1}/2) = \frac{{r\sin ({\Phi _2}/2)\cos ({\Phi _1}/2)}}{{\sin ({\Phi _1}/2 + {\Phi _2}/2)}},$(6)

    View in Article

    ${r_2} = {h_2}\cos ({\Phi _2}/2) = \frac{{r\sin ({\Phi _1}/2)\cos ({\Phi _2}/2)}}{{\sin ({\Phi _1}/2 + {\Phi _2}/2)}}. $(7)

    View in Article

    ${P_{{\rm{r,LOS}}}} \!=\! \frac{{{P_{\rm t}}{A_{\rm r}}}}{{4\pi {{\left(\dfrac{{r\sin ({\Phi _2}/2)\cos ({\Phi _1}/2)}}{{\sin ({\Phi _1}/2 + {\Phi _2}/2)}}\right)}^2}{{\left(\dfrac{{r\sin ({\Phi _1}/2)\cos ({\Phi _2}/2)}}{{\sin ({\Phi _1}/2 + {\Phi _2}/2)}}\right)}^2}}}{{\rm e}^{ - {K_{\rm e}}({r_1} + {r_2})}},$(8)

    View in Article

    ${P_{\rm{r,LOS}}} = \frac{{{P_{\rm t}}{A_{\rm r}}({\Phi _1}/2 + {\Phi _2}/2)}}{{4\pi {r^4}{{\sin }^2}({\Phi _2}/2){{\cos }^2}({\Phi _1}/2){{\sin }^2}({\Phi _1}/2){{\cos }^2}({\Phi _2}/2)}}{{\rm e}^{ - {K_{\rm e}}({r_1} + {r_2})}},$(9)

    View in Article

    $ {P_{{\rm{r,LOS}}}} = \frac{{4{P_{\rm t}}{A_{\rm r}}}}{{\pi {r^4}}}\frac{{{{\sin }^4}({\Phi _1}/2 + {\Phi _2}/2)}}{{{{\sin }^2}{\Phi _1}{{\sin }^2}{\Phi _2}}}{{\rm e}^{ - {K_{\rm e}}r}}. $(10)

    View in Article

    $ {P_{{\rm{r,NLOS}}}} = \frac{{{P_{\rm t}}}}{{{\Omega _1}}}\frac{{{{\rm e}^{ - {K_{\rm e}}{r_1}}}}}{{{r_1}^2}} \times \frac{{{K_{\rm s}}{P_{\rm s}}V}}{{4\pi }}{\left(\frac{\lambda }{{4\pi {r_2}}}\right)^2}{{\rm e}^{ - {K_{\rm e}}{r_2}}}\frac{{4\pi {A_r}}}{{{\lambda ^2}}}. $(11)

    View in Article

    ${\Omega _1} = 2\pi \left[ {1 - \cos ({\phi _1}/2)} \right],$(12)

    View in Article

    ${r_1} = r\sin {\theta _2}/\sin {\theta _{\rm s}},$(13)

    View in Article

    ${r_2} = r\sin {\theta _1}/\sin {\theta _{\rm s}},$(14)

    View in Article

    ${\theta _{\rm s}} = {\theta _1} + {\theta _2},\;V \gg {r_2}{\phi _2}{d^2}.$(15)

    View in Article

    ${P_{{\rm{r,NLOS}}}} = \frac{{{P_{\rm t}}{A_{\rm r}}{K_{\rm s}}{P_{\rm r}}{\phi _2}\phi _1^2\sin ({\theta _1} + {\theta _2})}}{{32{\pi ^3}r\sin {\theta _1}}} \times \left( - \frac{{{K_{\rm e}}r(\sin {\theta _1} + \sin {\theta _2})}}{{\sin ({\theta _1} + {\theta _2})}}\right),$(16)

    View in Article

    Liang Guo, Yanan Guo, Junxi Wang, Tongbo Wei. Ultraviolet communication technique and its application[J]. Journal of Semiconductors, 2021, 42(8): 081801
    Download Citation