• Photonics Research
  • Vol. 10, Issue 4, 870 (2022)
Lutong Cai, Jingwei Li, Ruixuan Wang, and Qing Li*
Author Affiliations
  • Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
  • show less
    DOI: 10.1364/PRJ.449267 Cite this Article Set citation alerts
    Lutong Cai, Jingwei Li, Ruixuan Wang, Qing Li. Octave-spanning microcomb generation in 4H-silicon-carbide-on-insulator photonics platform[J]. Photonics Research, 2022, 10(4): 870 Copy Citation Text show less

    Abstract

    Silicon carbide has recently emerged as a promising photonics material due to its unique properties, including possessing strong second- and third-order nonlinear coefficients and hosting various color centers that can be utilized for a wealth of quantum applications. Here, we report the design and demonstration of octave-spanning microcombs in a 4H-silicon-carbide-on-insulator platform for the first time, to our knowledge. Such broadband operation is enabled by optimized nanofabrication achieving >1 million intrinsic quality factors in a 36-μm-radius microring resonator, and careful dispersion engineering by investigating the dispersion properties of different mode families. For example, for the fundamental transverse-electric mode whose dispersion can be tailored by simply varying the microring waveguide width, we realized a microcomb spectrum covering the wavelength range from 1100 nm to 2400 nm with an on-chip power near 120 mW. While the observed comb state is verified to be chaotic and not soliton, attaining such a large bandwidth is a crucial step towards realizing f-2f self-referencing. In addition, we also observed a coherent soliton-crystal state for the fundamental transverse-magnetic mode, which exhibits stronger dispersion than the fundamental transverse-electric mode and hence a narrower bandwidth.
    Dintωμω0D1μ=k=21k!Dkμk,

    View in Article

    Lutong Cai, Jingwei Li, Ruixuan Wang, Qing Li. Octave-spanning microcomb generation in 4H-silicon-carbide-on-insulator photonics platform[J]. Photonics Research, 2022, 10(4): 870
    Download Citation