• Journal of Semiconductors
  • Vol. 41, Issue 3, 032303 (2020)
P. Satapathy1, A. Pfuch2, R. Grunwald3, and S. K. Das1
Author Affiliations
  • 1Department of Physics, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha, 751024, India
  • 2Department of Surface Engineering, INNOVENT e.V., Prüssingstraße 27b, D-07745 Jena, Germany
  • 3Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max Born Straße 2a, D-12489, Berlin, Germany
  • show less
    DOI: 10.1088/1674-4926/41/3/032303 Cite this Article
    P. Satapathy, A. Pfuch, R. Grunwald, S. K. Das. Enhancement of photocatalytic activity by femtosecond-laser induced periodic surface structures of Si[J]. Journal of Semiconductors, 2020, 41(3): 032303 Copy Citation Text show less
    References

    [1] H W Chang, Y C Tsai, C W Cheng et al. Nanostructured Ag surface fabricated by femtosecond laser for surface-enhanced Raman scattering. J Colloid Interface Sci, 360, 305(2011).

    [2]

    [3] J Long, P Fan, M Zhong et al. Superhydrophobic and colorful copper surfaces fabricated by picosecond laser induced periodic nanostructures. Appl Surf Sci, 31, 461(2014).

    [4] Z Wang, Q Zhao, C Wang. Reduction of friction of metals using laser-induced periodic surface nanostructures. Micromachines, 6, 1606(2015).

    [5] A Y Vorobyev, C Guo. Colorizing metals with femtosecond laser pulses. Appl Phys Lett, 92, 041914(2008).

    [6] B Dusser, Z Sagan, H Soder et al. Controlled nanostructrures formation by ultra fast laser pulses for color marking. Opt Exp, 18, 2913(2010).

    [7] A Y Vorobyev, V S Makin, C Guo. Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources. Phys Rev Lett, 102, 234301(2009).

    [8] T Y Hwang, A Y Vorobyev, C Guo. Surface-plasmon-enhanced photoelectron emission from nanostructure-covered periodic grooves on metals. Phys Rev B, 79, 085425(2009).

    [9] R T E Itina, V Vervisch, M Halbwax et al. Study on laser induced periodic structures and photovoltaic application. AIP Conf Proc, 1278, 576(2010).

    [10] J T Chen, W C Lai, Y J Kao et al. Laser-induced periodic structures for light extraction efficiency enhancement of GaN-based light emitting diodes. Opt Express, 20, 5689(2012).

    [11] S K Das, A Andreev, H Messaoudi et al. Highly periodic laser-induced nanostructures on thin Ti and Cu foils for potential application in laser ion acceleration. J Appl Phys, 119, 13101(2016).

    [12] T Baldacchini, J E Carey, M Zhou et al. Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser. Langmuir, 22, 4917(2006).

    [13] Y Shimotsuma, M Sakakura, K Miura et al. Application of femtosecond-laser induced nanostructures in optical memory. J Nanosci Nanotech, 7, 94(2007).

    [14] C Yang, W Dong, G Cui et al. Highly-efficient photocatalytic degradation of methylene blue by PoPD-modified TiO2 nanocomposites due to photosensitization-synergetic effect of TiO2 with PoPD. Sci Rep, 7, 3973(2017).

    [15] N Julkapli, S Bagheri, S B A Hamid. Recent advances in heterogeneous photocatalytic decolorization of synthetic dyes. Sci World J, 692307(2014).

    [16] T Tölke, A Heft, A Pfuch. Photocatalytically active multi-layer systems with enhanced transmission. Thin Solid Films, 516, 4578(2008).

    [17] T Tölke, A Kriltz, A Rechtenbach. The influence of pressure on the structure and the self-cleaning properties of sputter deposited TiO2 layers. Thin Solid Films, 518, 4242(2010).

    [18] E Granados, M M Calderon, J Krzywinski et al. Enhancement of surface area and wettability properties of boron doped diamond by femtosecond laser-induced periodic surface structuring. Opt Mat Exp, 7, 3389(2017).

    [19] R Kuladeep, C Sahoo, D N Rao. Direct writing of continuous and discontinuous sub-wavelength periodic surface structures on single-crystalline silicon using femtosecond laser. Appl Phys Lett, 104, 222103(2014).

    [20] V Diesen, C W Dunnill, I P Parkin et al. Silver enhanced TiO2 thin films: photocatalytic characterization using aqueous solutions of tris(hydroxymethyl)aminomethane. Dalton Trans, 43, 344(2014).

    [21] S Shuang, R Lv, Z Xie et al. Surface plasmon enhanced photocatalysis of Au/Pt-decorated TiO2 nanopillar arrays. Sci Rep, 6, 26670(2016).

    [22] W Cui, D Xue, X Yuan et al. Acid-treated TiO2 nanobelt supported platinum nanoparticles for the catalytic oxidation of formaldehyde at ambient conditions. Appl Surf Sci, 411, 105(2017).

    [23] J Chen, W Wang, W Li et al. Roles of crystal surface in Pt-loaded titania for photocatalytic conversion of organic pollutants: a first-principle theoretical calculation. ACS Appl Mater Interfaces, 7, 12671(2015).

    [24] M Marelli, C Evangelisti, M V Diamanti et al. TiO2 nanotubes arrays loaded with ligand-free Au nanoparticles: enhancement in photocatalytic activity. ACS Appl Mater Interfaces, 8, 31051(2016).

    [25] H L Wang, X H Liu. Preparation of silver nanoparticle loaded mesoporous TiO2 and its photocatalytic property. J Inorg Mater, 31, 555(2016).

    [26] H Cheng, C Hsu, Y Chen. Substrate materials and deposition temperature dependent growth characteristics and photocatalytic properties of ALD TiO2 films. J Electrochem Soc, 156, 275(2009).

    [27] P Shih, C Huang, T Chen et al. Enhancement on photocatalytic activity of an amorphous titanium oxide film with nano-textured surface by selective-fluorination etching process. Mater Res Bull, 52, 177(2014).

    [28] S K Zheng, T M Wang, W C Hao et al. Improvement of photocatalytic activity of TiO2 thin film by Sn ion implantation. Vacuum, 65, 155(2002).

    [29] M R Bayati, H M Alipour, S Joshi et al. Thin-film epitaxy and enhancement of photocatalytic activity of anatase/zirconia heterostructures by nanosecond excimer laser treatment. J Phys Chem C, 117, 7138(2013).

    [30] P Liu, W Y Li, J B Zhang et al. Photocatalytic activity enhancement of TiO2 porous thin film due to homogeneous surface modification of RuO2. J Mater Res, 26, 1532(2011).

    [31] A Álvaro, S Ramírez, A P Próspero et al. Enhanced photocatalytic activity of TiO2 films by modification with polyethylene glycol. Quím Nova, 35, 1931(2012).

    [32] J Liu, J Zhang. Photocatalytic activity enhancement of TiO2 nanocrystalline thin film with surface modification of poly-3-hexylthiophene by in situ polymerization. J Mater Res, 31, 1448(2016).

    [33] R M Cámara, E Crespo, R Portela et al. Enhanced photocatalytic activity of TiO2 thin films on plasma-pretreated organic polymers. Catal Today, 230, 145(2014).

    [34] H E Cheng, C H Hung, I S Yu et al. Strongly enhancing photocatalytic activity of TiO2 thin films by multi-heterojunction technique. Catalysts, 8, 440(2018).

    P. Satapathy, A. Pfuch, R. Grunwald, S. K. Das. Enhancement of photocatalytic activity by femtosecond-laser induced periodic surface structures of Si[J]. Journal of Semiconductors, 2020, 41(3): 032303
    Download Citation