• Laser & Optoelectronics Progress
  • Vol. 57, Issue 19, 190001 (2020)
Lisha Fan1、2、3、4, Shuowen Zhang1、2、3、4, Qunli Zhang1、2、3、4, and Jianhua Yao1、2、3、4、*
Author Affiliations
  • 1College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
  • 2Institute of Laser Advanced Manufacturing, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
  • 3Collaborative Innovation Center of High-End Laser Manufacturing Equipment (National 2011 Plan), Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
  • 4Zhejiang Provincial Engineering Research Center of High-End Equipment Laser Remanufacturing, Hangzhou, Zhejiang 310023, China
  • show less
    DOI: 10.3788/LOP57.190001 Cite this Article Set citation alerts
    Lisha Fan, Shuowen Zhang, Qunli Zhang, Jianhua Yao. Research Progress on Fabrication of One-Dimensional Well-Ordered Oxide Nanostructures by Pulsed Laser Deposition[J]. Laser & Optoelectronics Progress, 2020, 57(19): 190001 Copy Citation Text show less
    References

    [1] Tawfick S H, Baughman R H et al. Carbon nanotubes: present and future commercial applications[J]. Science, 339, 535-539(2013). http://www.ncbi.nlm.nih.gov/pubmed/23372006/

    [2] Mor G K, Shankar K, Paulose M et al. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells[J]. Nano Letters, 6, 215-218(2006).

    [3] Wong S S, Joselevich E, Woolley A T et al. Covalently functionalized nanotubes as nanometre- sized probes in chemistry and biology[J]. Nature, 394, 52-55(1998).

    [4] Mor G K, Shankar K, Paulose M et al. Enhanced photocleavage of water using titania nanotube arrays[J]. Nano Letters, 5, 191-195(2005).

    [5] Law M, Greene L E, Johnson J C et al. Nanowire dye-sensitized solar cells[J]. Nature Materials, 4, 455-459(2005).

    [6] Chan C K, Peng H, Liu G et al. High-performance lithium battery anodes using silicon nanowires[J]. Nature Nanotechnology, 3, 31-35(2008).

    [7] Xiang J, Lu W, Hu Y et al. Ge/Si nanowire heterostructures as high-performance field-effect transistors[J]. Nature, 441, 489-493(2006).

    [8] Huang X H. El-Sayed I H, Qian W, et al. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods[J]. Journal of the American Chemical Society, 128, 2115-2120(2006).

    [9] Huynh W U, Dittmer J J, Alivisatos A P. Hybrid nanorod-polymer solar cells[J]. Science, 295, 2425-2427(2002).

    [10] Pacholski C, Kornowski A, Weller H. Self-assembly of ZnO: from nanodots to nanorods[J]. Angewandte Chemie International Edition, 41, 1188-1191(2002).

    [11] Pan Z W. Nanobelts of semiconducting oxides[J]. Science, 291, 1947-1949(2001).

    [12] Fang X S, Bando Y, Liao M Y et al. Single-crystalline ZnS nanobelts as ultraviolet-light sensors[J]. Advanced Materials, 21, 2034-2039(2009).

    [13] Wang Z L. Functional oxide nanobelts: materials, properties and potential applications in nanosystems and biotechnology[J]. Annual Review of Physical Chemistry, 55, 159-196(2004).

    [14] Zhai T Y, Yao J N. One-dimensional nanostructures[M]. Hoboken, NJ, USA: John Wiley & Sons, Inc.(2012).

    [15] Yip C T, Huang H T, Zhou L M et al. Direct and seamless coupling of TiO2 nanotube photonic crystal to dye-sensitized solar cell: a single-step approach[J]. Advanced Materials, 23, 5624-5628(2011).

    [16] Yang X C, Lu Y, Wang M T et al. A photonic crystal fiber glucose sensor filled with silver nanowires[J]. Optics Communications, 359, 279-284(2016).

    [17] Pan Z W, Mahurin S M, Dai S et al. Nanowire array gratings with ZnO combs[J]. Nano Letters, 5, 723-727(2005).

    [18] Li Z L, Zheng G X, He P A et al. All-silicon nanorod-based Dammann gratings[J]. Optics Letters, 40, 4285-4288(2015).

    [19] Zhu X X, Li Q L, Ioannou D E et al. Fabrication, characterization and simulation of high performance Si nanowire-based non-volatile memory cells[J]. Nanotechnology, 22, 254020(2011).

    [20] Wei Z, Shen Y, Liu D et al. Geometry-enhanced ultra-long TiO2 nanobelts in an all-vanadium photoelectrochemical cell for efficient storage of solar energy[J]. Nano Energy, 26, 200-207(2016).

    [21] Yang Z B, Bai S, Yue H W et al. Germanium anode with lithiated-copper-oxide nanorods as an electronic-conductor for high-performance lithium-ion batteries[J]. Materials Letters, 136, 107-110(2014).

    [22] Yu L M, Zhu Y C, Liu Y L et al. Ferroelectric perovskite oxide@TiO2 nanorod heterostructures: preparation, characterization, and application as a platform for photoelectrochemical bioanalysis[J]. Analytical Chemistry, 90, 10803-10811(2018).

    [23] Das R, Khan G G, Mandal K. Pr. Proceedings of 6th Joint European Magnetic Symposia (JEMS), Sep 09-14, 2012. Parma, Italy. 2012, 40: UNSP 15015.(2012).

    [24] Yin Y W, Burton J D, Kim Y M et al. Enhanced tunnelling electroresistance effect due to a ferroelectrically induced phase transition at a magnetic complex oxide interface[J]. Nature Materials, 12, 397-402(2013).

    [25] Walton A S, Gorzny M Ł, Bramble J P et al. Photoelectric properties of electrodeposited copper(I) oxide nanowires[J]. Journal of the Electrochemical Society, 156, K191-K195(2009).

    [26] Morales J R, Amos N, Khizroev S et al. Magneto-optical Faraday effect in nanocrystalline oxides[J]. Journal of Applied Physics, 109, 093110(2011).

    [27] Thekkayil R, John H[J]. Gopinath P. Grafting of self assembled polyaniline nanorods on reduced graphene oxide for nonlinear optical application. Synthetic Metals, 185/186, 38-44(2013).

    [28] Liu Z B, Wang Y, Zhang X L et al. Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes[J]. Applied Physics Letters, 94, 021902(2009).

    [29] Li W Z. Quantised charging of gold nanoclusters film[D]. Hangzhou: Zhejiang University(2015).

    [30] Schmidt M. Kusche R, von Issendorff B, et al. Irregular variations in the melting point of size-selected atomic clusters[J]. Nature, 393, 238-240(1998).

    [31] Schlexer P, Andersen A B, Sebok B et al. Size-dependence of the melting temperature of individual Au nanoparticles[J]. Particle & Particle Systems Characterization, 36, 1800480(2019).

    [32] Choi S H, Wang K L, Leung M S et al. Fabrication of bismuth nanowires with a silver nanocrystal shadow mask[J]. Journal of Vacuum Science & Technology A, 18, 1326-1328(2000).

    [33] Wang J, Gudiksen M S, Duan X et al. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires[J]. Science, 293, 1455-1457(2001).

    [34] Lee Y, Choi C H, Jang Y T et al. Tungsten nanowires and their field electron emission properties[J]. Applied Physics Letters, 81, 745-747(2002).

    [35] Wang Y W, Wang G Z, Wang S X et al. Fabrication and magnetic properties of highly ordered Co16Ag84 alloy nanowire array[J]. Applied Physics A, 74, 577-580(2002).

    [36] Yan B H, Zhou G, Duan W H et al. Uniaxial-stress effects on electronic properties of silicon carbide nanowires[J]. Applied Physics Letters, 89, 023104(2006).

    [37] Jing L Q, Sun X J, Shang J et al. Review of surface photovoltage spectra of nano-sized semiconductor and its applications in heterogeneous photocatalysis[J]. Solar Energy Materials and Solar Cells, 79, 133-151(2003).

    [38] Li P, Yao X, Gao F et al. Preparation of aligned Ca3Co2O6 nanorods and their steplike magnetization[J]. Applied Physics Letters, 91, 042505(2007).

    [39] Lee H W, Lee K M, Lee S et al. Ultrafast third-order optical nonlinearities of vertically-aligned ZnO nanorods[J]. Chemical Physics Letters, 447, 86-90(2007).

    [40] Zhang Y X, Li G H, Jin Y X et al. Hydrothermal synthesis and photoluminescence of TiO2 nanowires[J]. Chemical Physics Letters, 365, 300-304(2002).

    [41] Liu Z, Li S, Yang Y et al. Complex-surfactant-assisted hydrothermal route to ferromagnetic nickel nanobelts[J]. Advanced Materials, 15, 1946-1948(2003).

    [42] Morales A M, Lieber C M. A laser ablation method for the synthesis of crystalline semiconductor nanowires[J]. Science, 279, 208-211(1998).

    [43] Wang X D, Li Z D, Shi J et al. One-dimensional titanium dioxide nanomaterials: nanowires, nanorods, and nanobelts[J]. Chemical Reviews, 114, 9346-9384(2014).

    [44] Wan H, Ruda H E. A study of the growth mechanism of CVD-grown ZnO nanowires[J]. Journal of Materials Science: Materials in Electronics, 21, 1014-1019(2010).

    [45] Bhaviripudi S, Mile E, Steiner S A et al. CVD synthesis of single-walled carbon nanotubes from gold nanoparticle catalysts[J]. Journal of the American Chemical Society, 129, 1516-1517(2007).

    [46] Horprathum M, Srichaiyaperk T, Samransuksamer B et al. Ultrasensitive hydrogen sensor based on Pt-decorated WO3 nanorods prepared by glancing-angle dc magnetron sputtering[J]. ACS Applied Materials & Interfaces, 6, 22051-22060(2014).

    [47] Horprathum M, Limwichean K, Wisitsoraat A et al. NO 2-sending properties of WO3 nanorods prepared by glancing angle DC magnetron sputtering[J]. Sensors and Actuators B, 176, 685-691(2013).

    [48] Tseng L T, Luo X, Tan T T et al. Doping concentration dependence of microstructure and magnetic behaviours in Co-doped TiO2 nanorods[J]. Nanoscale Research Letters, 9, 1-10(2014).

    [49] Fang D, Huang K L, Liu S Q et al. High density copper nanowire arrays deposition inside ordered titania pores by electrodeposition[J]. Electrochemistry Communications, 11, 901-904(2009).

    [50] Liang H W, Liu S, Yu S H. Controlled synthesis of one-dimensional inorganic nanostructures using pre-existing one-dimensional nanostructures as templates[J]. Advanced Materials, 22, 3925-3937(2010).

    [51] Rigout M L, Niu H J, Qin C L et al. Fabrication and photoluminescence of hyperbranched silicon nanowire networks on silicon substrates by laser-induced forward transfer[J]. Nanotechnology, 19, 245303(2008).

    [52] Rahm A, Lorenz M, Nobis T et al. Pulsed-laser deposition and characterization of ZnO nanowires with regular lateral arrangement[J]. Applied Physics A, 88, 31-34(2007).

    [53] Gao X S, Liu L F, Birajdar B et al. High-density periodically ordered magnetic cobalt ferrite nanodot arrays by template-assisted pulsed laser deposition[J]. Advanced Functional Materials, 19, 3450-3455(2009).

    [54] Li L, Zhang X Q, Li L et al. Magnetoresistance of single-crystalline La0.67Sr0.33MnO3/MgO nanorod arrays[J]. Solid State Communications, 171, 46-49(2013).

    [55] Dai Q L, Chen J J, Lu L Y et al. Pulsed laser deposition of CdSe quantum dots on Zn2SnO4 nanowires and their photovoltaic applications[J]. Nano Letters, 12, 4187-4193(2012).

    [56] Nikov R G, Dikovska A O, Avdeev G V et al. PLD fabrication of oriented nanowires in magnetic field[J]. Applied Surface Science, 471, 368-374(2019).

    [57] Sun Y, Fuge G M. Ashfold M N R. Growth of aligned ZnO nanorod arrays by catalyst-free pulsed laser deposition methods[J]. Chemical Physics Letters, 396, 21-26(2004).

    [58] Casari C S, Giannuzzi C S, Russo V. Carbon-atom wires produced by nanosecond pulsed laser deposition in a background gas[J]. Carbon, 104, 190-195(2016).

    [59] Cheng Y, Lu Y M, Guo Y L et al. Development of function films prepared by pulsed laser deposition technology[J]. Laser & Optoelectronics Progress, 52, 120003(2015).

    [60] Ashfold M N R, Claeyssens F, Fuge G M et al. Pulsed laser ablation and deposition of thin films[J]. Chemical Society Reviews, 33, 23-31(2004).

    [61] Xuan T M, Yin G L, Ge M Y et al. Research progress on nano-ZnO gas sensors[J]. Materials Review, 29, 132-136(2015).

    [62] Zhou S Q, Lu Q J, Chen M P et al. Research progress of micro/nano-structured In2O3 gas sensor[J]. Journal of Functional Materials and Devices, 25, 65-76(2019).

    [63] Ristoscu C, Cultrera L, Dima A et al. SnO2 nanostructured films obtained by pulsed laser ablation deposition[J]. Applied Surface Science, 247, 95-100(2005).

    [64] Mo G K, Liu J H, Zou Z L et al. Preparation of low-resistivity GZO thin films using pulsed laser deposition and investigation of optoelectronic properties[J]. Chinese Journal of Lasers, 46, 1003001(2019).

    [65] Li X L, Feng Y D, Wang Z M et al. Properties, preparation and application of aluminium oxide thin films[J]. Vacuum, 53, 16-21(2016).

    [66] Xing X, Wang W J, Li S H et al. Properties of TiO2 films deposited by pulsed laser deposition[J]. Chinese Journal of Lasers, 40, 0207001(2013).

    [67] Okamoto K, Yamada T, Yasumoto J et al. Influence of deposition conditions on self-assembled growth of Pb(Zr, Ti)O3 nanorods by pulsed laser deposition at elevated oxygen pressure[J]. Journal of the Ceramic Society of Japan, 126, 276-280(2018).

    [68] Tong X L, Luo M Z, Jiang D S et al. Research development on GaN films grown by laser deposition[J]. Laser Journal, 27, 5-7(2006).

    [69] Xie S S, He H, Fu Y C. Development of structural characterization and properties of AlN film prepared by pulsed laser deposition[J]. Materials Review, 24, 45-49(2010).

    [70] Grigoriev S N, Fominski V Y, Romanov R I et al. Tribological properties of gradient Mo-Se-Ni-C thin films obtained by pulsed laser deposition in standard and shadow mask configurations[J]. Thin Solid Films, 556, 35-43(2014).

    [71] Liang L R, Wei A X, Mo Z. Bi3.95Er0.05Ti3O12 thin films synthesized by pulsed laser deposition technique and their dielectric properties at room temperature[J]. Chinese Journal of Lasers, 45, 0902002(2018).

    [72] Garcia-Sanz F J, Mayor M B, Arias J L et al. Hydroxyapatite coatings: a comparative study between plasma-spray and pulsed laser deposition techniques[J]. Journal of Materials Science: Materials in Medicine, 8, 861-865(1997).

    [73] Clèries L. Fernández-Pradas J M, Morenza J L. Bone growth on and resorption of calcium phosphate coatings obtained by pulsed laser deposition[J]. Journal of Biomedical Materials Research, 49, 43-52(2000).

    [74] Deng Z C, Liu J D, Wang X et al. Growth characteristics of Ag nanocrystalline thin films prepared by pulsed laser ablation in vacuum[J]. Chinese Journal of Lasers, 46, 0903003(2019).

    [75] Gontad F, Caricato A P, Cesaria M et al. Decoration of silica nanowires with gold nanoparticles through ultra-short pulsed laser deposition[J]. Applied Surface Science, 418, 430-436(2017).

    [76] Gonzalo J, Perea A, Babonneau D et al. Competing processes during the production of metal nanoparticles by pulsed laser deposition[J]. Physical Review B, 71, 125420(2005).

    [77] Mahjouri-Samani M, Tian M, Puretzky A A et al. Nonequilibrium synthesis of TiO2 nanoparticle “building blocks” for crystal growth by sequential attachment in pulsed laser deposition[J]. Nano Letters, 17, 4624-4633(2017).

    [78] Shkurmanov A, Sturm C, Franke H et al. Low-temperature PLD-growth of ultrathin ZnO nanowires by using ZnxAl1-xO and ZnxGa1-xO seed layers[J]. Nanoscale Research Letters, 12, 134(2017).

    [79] Li H, Guan L L, Xu Z Q et al. Synthesis and characterization of amorphous SiO2 nanowires via pulsed laser deposition accompanied by N2 annealing[J]. Applied Surface Science, 389, 705-712(2016).

    [80] Yang Q, Li Y L, Hu Z G et al. Extended photo-response of ZnO/CdS core/shell nanorods fabricated by hydrothermal reaction and pulsed laser deposition[J]. Optics Express, 22, 8617-8623(2014).

    [81] Zhou Z, Nonnenmann S S. Progress in nanoporous templates: beyond anodic aluminum oxide and towards functional complex materials[J]. Materials, 12, 2535(2019).

    [82] Lee W, Han H, Lotnyk A et al. Individually addressable epitaxial ferroelectric nanocapacitor arrays with near Tb inch -2 density[J]. Nature Nanotechnology, 3, 402-407(2008).

    [83] Li L, Li Y, Gao S et al. Ordered Co3O4 hierarchical nanorod arrays: tunable superhydrophilicity without UV irradiation and transition to superhydrophobicity[J]. Journal of Materials Chemistry, 19, 8366-8371(2009).

    [84] Tian G, Chen D Y, Yao J X et al. BiFeO3 nanorings synthesized via AAO template-assisted pulsed laser deposition and ion beam etching[J]. RSC Advances, 7, 41210-41216(2017).

    [85] Hu J T, Odom T W, Lieber C M. Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes[J]. Accounts of Chemical Research, 32, 435-445(1999).

    [86] Wagner R S, Ellis W C. Vapor-liquid-solid mechanism of single crystal growth[J]. Applied Physics Letters, 4, 89-90(1964).

    [87] Wu Y Y, Yang P D. Direct observation of vapor-liquid-solid nanowire growth[J]. Journal of the American Chemical Society, 123, 3165-3166(2001).

    [88] Kodambaka S, Tersoff J, Reuter M C et al. Germanium nanowire growth below the eutectic temperature[J]. Science, 316, 729-732(2007).

    [89] Barth S, Hernandez-Ramirez F, Holmes J D et al. Synthesis and applications of one-dimensional semiconductors[J]. Progress in Materials Science, 55, 563-627(2010).

    [90] Dhungana D S, Hemeryck A, Sartori N et al. Insight of surface treatments for CMOS compatibility of InAs nanowires[J]. Nano Research, 12, 581-586(2019).

    [91] Liu B, Hu Z D, Che Y et al. Growth of ZnO nanoparticles and nanorods with ultrafast pulsed laser deposition[J]. Applied Physics A, 93, 813-818(2008).

    [92] Yan M, Zhang H, Widjaja E J et al. Self-assembly of well-aligned gallium-doped zinc oxide nanorods[J]. Journal of Applied Physics, 94, 5240-5246(2003).

    [93] Choopun S, Tabata H, Kawai T. Self-assembly ZnO nanorods by pulsed laser deposition under argon atmosphere[J]. Journal of Crystal Growth, 274, 167-172(2005).

    [94] Wang B, Yang Y H, Xu N S et al. Mechanisms of size-dependent shape evolution of one-dimensional nanostructure growth[J]. Physical Review B, 74, 235305(2006).

    [95] Yan Y G, Zhou L X, Zhang J et al. Synthesis and growth discussion of one-dimensional MgO nanostructures: nanowires, nanobelts, and nanotubes in VLS mechanism[J]. Journal of Physical Chemistry C, 112, 10412-10417(2008).

    [96] Park S. Enhancement of hydrogen sensing response of ZnO nanowires for the decoration of WO3 nanoparticles[J]. Materials Letters, 234, 315-318(2019).

    [97] Kaur N, Zappa D, Poli N et al. Integration of VLS-grown WO3 nanowires into sensing devices for the detection of H2S and O3[J]. ACS Omega, 4, 16336-16343(2019).

    [98] Li M K, Wang D Z, Ding S et al. Synthesis and properties of aligned ZnO microtube arrays[J]. Applied Surface Science, 253, 4161-4165(2007).

    [99] Yu K, Zhang Y, Luo L et al. Growth and optical properties of quadrangular zinc oxide nanorods on copper-filled porous silicon[J]. Applied Physics A, 79, 443-446(2004).

    [100] Lee C J, Lee T J, Lyu S C et al. Field emission from well-aligned zinc oxide nanowires grown at low temperature[J]. Applied Physics Letters, 81, 3648-3650(2002).

    [101] Gao P X, Ding Y, Wang Z L. Crystallographic orientation-aligned ZnO nanorods grown by a tin catalyst[J]. Nano Letters, 3, 1315-1320(2003).

    [102] Nobis T, Kaidashev E M, Rahm A et al. Spatially inhomogeneous impurity distribution in ZnO micropillars[J]. Nano Letters, 4, 797-800(2004).

    [103] Lorenz M, Kaidashev E M, Rahm A et al. MgxZn1-xO(0≤x≤0.2) nanowire arrays on sapphire grown by high-pressure pulsed-laser deposition[J]. Applied Physics Letters, 86, 143113(2005).

    [104] Marcu A, Yanagida T, Nagashima K et al. Effect of ablated particle flux on MgO nanowire growth by pulsed laser deposition[J]. Journal of Applied Physics, 102, 016102(2007).

    [105] Nagashima K, Yanagida T, Tanaka H et al. Epitaxial growth of MgO nanowires by pulsed laser deposition[J]. Journal of Applied Physics, 101, 124304(2007).

    [106] Yanagida T, Nagashima K, Tanaka H et al. Mechanism of critical catalyst size effect on MgO nanowire growth by pulsed laser deposition[J]. Journal of Applied Physics, 104, 016101(2008).

    [107] Kawakami M, Hartanto A B, Nakata Y et al. Synthesis of ZnO nanorods by nanoparticle assisted pulsed-laser deposition[J]. Japanese Journal of Applied Physics, 42, L33-L35(2003).

    [108] Senthil Kumar E, Chandran M, Bellarmine F et al. Formation of one-dimensional ZnO nanowires from screw-dislocation-driven two-dimensional hexagonal stacking on diamond substrate using nanoparticle-assisted pulsed laser deposition[J]. Journal of Physics D, 47, 034016(2014).

    [109] Nakamura D, Shimogaki T, Nakao S et al. Patterned growth of ZnO nanowalls by nanoparticle-assisted pulsed laser deposition[J]. Journal of Physics D, 47, 034014(2014).

    [110] Hartanto A B, Ning X, Nakata Y et al. Growth mechanism of ZnO nanorods from nanoparticles formed in a laser ablation plume[J]. Applied Physics A, 78, 299-301(2004).

    [111] Karnati P, Haque A. Taufique M F N, et al. A systematic study on the structural and optical properties of vertically aligned zinc oxide nanorods grown by high pressure assisted pulsed laser deposition technique[J]. Nanomaterials, 8, 62(2018).

    [112] Sun Y, Fuge G M. Ashfold M N R. Growth mechanisms for ZnO nanorods formed by pulsed laser deposition[J]. Superlattices and Microstructures, 39, 33-40(2006).

    [113] Liu Z, Ong C K, Yu T et al. Catalyst-free pulsed-laser-deposited ZnO nanorods and their room-temperature photoluminescence properties[J]. Applied Physics Letters, 88, 053110(2006). http://scitation.aip.org/content/aip/journal/apl/88/5/10.1063/1.2168675

    [114] Fuge G M. Holmes T M S, Ashfold M N R. Ultrathin aligned ZnO nanorod arrays grown by a novel diffusive pulsed laser deposition method[J]. Chemical Physics Letters, 479, 125-127(2009).

    [115] Tien L C, Pearton S J, Norton D P et al. Synthesis and characterization of single crystalline SnO2 nanorods by high-pressure pulsed laser deposition[J]. Applied Physics A, 91, 29-32(2008).

    [116] Tan S S, Kee Y Y, Wong H Y et al. Pulsed laser deposition of ITO nanorods in argon and OLED applications[J]. Surface and Coatings Technology, 231, 98-101(2013).

    [117] Lee D, Gao X, Fan L S et al. Nonequilibrium synthesis of highly porous single-crystalline oxide nanostructures[J]. Advanced Materials Interfaces, 4, 1601034(2017).

    [118] Yang Y G, Johnson R A. Wadley H N G. A Monte Carlo simulation of the physical vapor deposition of nickel[J]. Acta Materialia, 45, 1455-1468(1997).

    [119] Fan L S, Gao X, Lee D et al. Kinetically controlled fabrication of single-crystalline TiO2 nanobrush architectures with high energy {001} facets[J]. Advanced Science, 4, 1700045(2017).

    [120] Fan L, Gao X, Farmer T O et al. Vertically aligned single-crystalline CoFe2O4 nanobrush architectures with high magnetization and tailored magnetic anisotropy[J]. Nanomaterials, 10, 472(2020).

    [121] Lee D, Gao X, Sun L et al. Colossal oxygen vacancy formation at a fluorite-bixbyite interface[J]. Nature Communications, 11, 1371(2020).

    [122] Asaoka K, Ohno Y, Kishimoto S et al. Ultranarrow luminescence lines from single quantum dots[J]. Physical Review Letters, 74, 4043-4046(1995).

    [123] Grosso D, Boissière C, Smarsly B et al. Periodically ordered nanoscale islands and mesoporous films composed of nanocrystalline multimetallic oxides[J]. Nature Materials, 3, 787-792(2004).

    [124] Zheng H, Wang J, Lofland S E et al. Multiferroic BaTiO3-CoFe2O4 nanostructures[J]. Science, 303, 661-663(2004).

    [125] Zavaliche F, Zheng H, Mohaddes-Ardabili L et al. Electric field-induced magnetization switching in epitaxial columnar nanostructures[J]. Nano Letters, 5, 1793-1796(2005).

    [126] Zheng H M, Zhan Q, Zavaliche F et al. Controlling self-assembled perovskite-spinel nanostructures[J]. Nano Letters, 6, 1401-1407(2006).

    [127] Teranishi R, Yasunaga S, Kai H et al. Superconducting properties of ErBCO films with BaMO3 nanorods (M=Zr and Sn) by pulsed laser deposition[J]. Physica C, 468, 1522-1526(2008).

    [128] Ichinose A, Naoe K, Horide T et al. Microstructures and critical current densities of YBCO films containing structure-controlled BaZrO3 nanorods[J]. Superconductor Science and Technology, 20, 1144-1150(2007).

    [129] Kim J H, Zhu K, Yan Y F et al. Microstructure and pseudocapacitive properties of electrodes constructed of oriented NiO-TiO2 nanotube arrays[J]. Nano Letters, 10, 4099-4104(2010).

    [130] Gonzalez-Chavarri J, Parellada-Monreal L, Castro-Hurtado I et al. ZnO nanoneedles grown on chip for selective NO2 detection indoors[J]. Sensors and Actuators B, 255, 1244-1253(2018).

    [131] Vayssieres L. Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions[J]. Advanced Materials, 15, 464-466(2003).

    [132] Park J A, Moon J, Lee S J et al. Fabrication and characterization of ZnO nanofibers by electrospinning[J]. Current Applied Physics, 9, S210-S212(2009).

    [133] Choi K S, Chang S P. Effect of structure morphologies on hydrogen gas sensing by ZnO nanotubes[J]. Materials Letters, 230, 48-52(2018).

    [134] Shen G, Bando Y, Liu B et al. Characterization and field-emission properties of vertically aligned ZnO nanonails and nanopencils fabricated by a modified thermal-evaporation process[J]. Advanced Functional Materials, 16, 410-416(2006).

    [135] Kaur M, Kailasaganapathi S, Ramgir N et al. Gas dependent sensing mechanism in ZnO nanobelt sensor[J]. Applied Surface Science, 394, 258-266(2017).

    [136] Yang J, An S, Park W et al. Photocatalysis using ZnO thin films and nanoneedles grown by metal-organic chemical vapor deposition[J]. Advanced Materials, 16, 1661-1664(2004).

    [137] Tian S Q, Yang F, Zeng D W et al. Solution-processed gas sensors based on ZnO nanorods array with an exposed (0001) facet for enhanced gas-sensing properties[J]. Journal of Physical Chemistry C, 116, 10586-10591(2012).

    [138] Huang M H, Mao S, Feick H et al. Room-temperature ultraviolet nanowire nanolasers[J]. Science, 292, 1897-1899(2001).

    [139] Soci C, Zhang A, Xiang B et al. ZnO nanowire UV photodetectors with high internal gain[J]. Nano Letters, 7, 1003-1009(2007).

    [140] Zhang X M, Lu M Y, Zhang Y et al. Fabrication of a high-brightness blue-light-emitting diode using a ZnO-nanowire array grown on p-GaN thin film[J]. Advanced Materials, 21, 2767-2770(2009).

    [141] Wang Z L, Song J H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays[J]. Science, 312, 242-246(2006).

    [142] Huang C Y, Ho Y, Hung C et al. Compact Ga-doped ZnO nanorod thin film for making high-performance transparent resistive switching memory[J]. IEEE Transactions on Electron Devices, 61, 3435-3441(2014).

    [143] Zhang Y F, Russo R E, Mao S S. Femtosecond laser assisted growth of ZnO nanowires[J]. Applied Physics Letters, 87, 133115(2005).

    [144] Yang Y, Feng Y, Zhu H et al. Growth, structure, and cathodeluminescence of Eu-doped ZnO nanowires prepared by high-temperature and high-pressure pulsed-laser deposition[J]. Journal of Applied Physics, 107, 053502(2010).

    [145] Palani I A, Nakamura D, Okazaki K et al. Influence of Sb as a catalyst in the growth of ZnO nano wires and nano sheets using nanoparticle assisted pulsed laser deposition (NAPLD)[J]. Materials Science and Engineering B, 176, 1526-1530(2011).

    [146] Premkumar T, Manoravi P, Panigrahi B K et al. Particulate assisted growth of ZnO nanorods and microrods by pulsed laser deposition[J]. Applied Surface Science, 255, 6819-6822(2009).

    [147] Liu W, Xu H, Wang L et al. Size-controlled growth of ZnO nanowires by catalyst-free high-pressure pulsed laser deposition and their optical properties[J]. AIP Advances, 1, 022145(2011).

    [148] Tien L C, Pearton S J, Norton D P et al. Synthesis and microstructure of vertically aligned ZnO nanowires grown by high-pressure-assisted pulsed-laser deposition[J]. Journal of Materials Science, 43, 6925-6932(2008).

    [149] Jo W, Lee J Y, Chun H. Titania nanotubes grown on carbon fibers for photocatalytic decomposition of gas-phase aromatic pollutants[J]. Materials, 7, 1801-1813(2014).

    [150] Ping G X, Wang C, Chen D et al. Fabrication of self-organized TiO2 nanotube arrays for photocatalytic reduction of CO2[J]. Journal of Solid State Electrochemistry, 17, 2503-2510(2013).

    [151] AltomareM, PozziM, AllietaM, et al. and O2 photocatalytic production on TiO2 nanotube arrays: effect of the anodization time on structural features and photoactivity[J]. Applied CatalysisB, 2013, 136/137: 81- 88.

    [152] Ohsaki Y, Masaki N, Kitamura T et al. Dye-sensitized TiO2 nanotube solar cells: fabrication and electronic characterization[J]. Physical Chemistry Chemical Physics, 7, 4157-4163(2005).

    [153] Rao H S, Wu W Q, Liu Y et al. CdS/CdSe co-sensitized vertically aligned anatase TiO2 nanowire arrays for efficient solar cells[J]. Nano Energy, 8, 1-8(2014).

    [154] Fakharuddin A, Di Giacomo F, Palma A L et al. Vertical TiO2 nanorods as a medium for stable and high-efficiency perovskite solar modules[J]. ACS Nano, 9, 8420-8429(2015).

    [155] Zhang Y Q, Fu Q, Xu Q L et al. Improved electrochemical performance of nitrogen doped TiO2-B nanowires as anode materials for Li-ion batteries[J]. Nanoscale, 7, 12215-12224(2015).

    [156] Jiang S F, Yi B L, Zhang C K et al. Vertically aligned carbon-coated titanium dioxide nanorod arrays on carbon paper with low platinum for proton exchange membrane fuel cells[J]. Journal of Power Sources, 276, 80-88(2015).

    [157] Li Y, Fang X S, Koshizaki N et al. Periodic TiO2 nanorod arrays with hexagonal nonclose-packed arrangements: excellent field emitters by parameter optimization[J]. Advanced Functional Materials, 19, 2467-2473(2009).

    [158] Nechache R, Nicklaus M, Diffalah N et al. Pulsed laser deposition growth of rutile TiO2 nanowires on silicon substrates[J]. Applied Surface Science, 313, 48-52(2014).

    [159] Ma D Y, Shi G Y, Wang H Z et al. Morphology-tailored synthesis of vertically aligned 1D WO3nano-structure films for highly enhanced electrochromic performance[J]. Journal of Materials Chemistry A, 1, 684-691(2013).

    [160] Li S T. Samy El-Shall M. Synthesis and characterization of photochromic molybdenum and tungsten oxide nanoparticles[J]. Nanostructured Materials, 12, 215-219(1999).

    [161] Shapovalov V I, Lapshin A E, Komlev A E et al. Crystallization and thermochromism in tungsten oxide films annealed in vacuum[J]. Technical Physics Letters, 38, 555-558(2012).

    [162] Solis J L, Saukko S, Kish L et al. Semiconductor gas sensors based on nanostructured tungsten oxide[J]. Thin Solid Films, 391, 255-260(2001).

    [163] Shibuya M, Miyauchi M. Efficient electrochemical reaction in hexagonal WO3 forests with a hierarchical nanostructure[J]. Chemical Physics Letters, 473, 126-130(2009).

    [164] Ou J, Yaacob M H, Campbell J L et al. H2 sensing performance of optical fiber coated with nano-platelet WO3 film[J]. Sensors and Actuators B, 166, 1-6(2012).

    [165] Shirke Y M, Porel Mukherjee S. Selective synthesis of WO3and W18O49nanostructures: ligand-free pH-dependent morphology-controlled self-assembly of hierarchical architectures from 1D nanostructure and sunlight-driven photocatalytic degradation[J]. CrystEngComm, 19, 2096-2105(2017).

    [166] Huang K, Pan Q T, Yang F et al. Controllable synthesis of hexagonal WO3 nanostructures and their application in lithium batteries[J]. Journal of Physics D, 41, 155417(2008).

    [167] Zheng F, Xi C P, Xu J H et al. Facile preparation of WO3 nano-fibers with super large aspect ratio for high performance supercapacitor[J]. Journal of Alloys and Compounds, 772, 933-942(2019).

    [168] Huang P. Kalyar M M A, Webster R F, et al. Tungsten oxide nanorod growth by pulsed laser deposition: influence of substrate and process conditions[J]. Nanoscale, 6, 13586-13597(2014).

    [169] Ponzoni A, Russo V, Bailini A et al. Structural and gas-sensing characterization of tungsten oxide nanorods and nanoparticles[J]. Sensors and Actuators B, 153, 340-346(2011).

    [170] Ahmad M Z, Kang J H, Sadek A Z et al. Synthesis of WO3 nanorod based thin films for ethanol and H2 sensing[J]. Procedia Engineering, 47, 358-361(2012).

    [171] Wang J, Neaton J B, Zheng H et al. Epitaxial BiFeO3 multiferroic thin film heterostructures[J]. Science, 299, 1719-1722(2003).

    [172] Eerenstein W, Mathur N D, Scott J F. Multiferroic and magnetoelectric materials[J]. Nature, 442, 759-765(2006).

    [173] McCammon C. Perovskite as a possible sink for ferric iron in the lower mantle[J]. Nature, 387, 694-696(1997).

    [174] Cuchiaro J D, McMillan L D et al. Fatigue-free ferroelectric capacitors with platinum electrodes[J]. Nature, 374, 627-629(1995).

    [175] Tuchiya T, Itoh T, Sasaki G et al. Preparation and properties of piezoelectric lead zirconate titanate thin films for microsensors and microactuators by sol-gel processing[J]. Journal of the Ceramic Society of Japan, 104, 159-163(1996).

    [176] Zhang Q, Whatmore R W. Sol-gel PZT and Mn-doped PZT thin films for pyroelectric applications[J]. Journal of Physics D, 34, 2296(2001).

    [177] Li J, Levin I, Slutsker J et al. Self-assembled multiferroic nanostructures in the CoFe2O4-PbTiO3 system[J]. Applied Physics Letters, 87, 072909(2005).

    [178] Tang X, Gao M, Luo H S et al. Self-assembled patterned CoFe2O4-SrRuO3 electrodes: enhanced functional properties by polar nano-regions reorientation[J]. Journal of the American Ceramic Society, 103, 3726-3731(2020).

    [179] Chen Y Z, Liu T H, Chen C Y et al. Taper PbZr0.2Ti0.8O3 nanowire arrays: from controlled growth by pulsed laser deposition to piezopotential measurements[J]. ACS Nano, 6, 2826-2832(2012).

    [180] Nguyen M D, Houwman E P, Dekkers M et al. Strongly enhanced piezoelectric response in lead zirconate titanate films with vertically-aligned columnar grains[J]. ACS Applied Materials & Interfaces, 9, 9849-61(2017).

    [181] Xu J, Liu X H, Li Y D. Single crystalline YBa2Cu3O7-δ nanowires from a template-directed sol-gel route[J]. Materials Chemistry and Physics, 86, 409-413(2004).

    [182] Lai S H, Hsu Y C, Lan M D. Synthesis of Bi2Sr2CaCu2Oy nanowire and its superconductivity[J]. Solid State Communications, 148, 452-454(2008).

    [183] Hall S. Biomimetic synthesis of high-tc, type-II superconductor nanowires[J]. Advanced Materials, 18, 487-490(2006).

    [184] Greenberg Y, Lumelsky Y, Silverstein M S et al. YBCO nanofibers synthesized by electrospinning a solution of poly(acrylic acid) and metal nitrates[J]. Journal of Materials Science, 43, 1664-1668(2008).

    [185] Schnepp Z A C, Wimbush S C, Mann S et al. Structural evolution of superconductor nanowires in biopolymer gels[J]. Advanced Materials, 20, 1782-1786(2008).

    [186] Kargar M, Khoshnevisan B. The study of ultrasonic irradiation effects on solid state powders of HTc superconductor YBa2Cu3O7-x[J]. Modern Physics Letters B, 30, 1650148(2016).

    [187] Zhang Y F, Tang Y H, Duan X F et al. Yttrium-Barium-copper-oxygen nanorods synthesized by laser ablation[J]. Chemical Physics Letters, 323, 180-184(2000).

    [188] Hu L Y, Jin W F, Li J L et al. Effects of pulse energy on melt volume in nanosecond pulsed laser processing[J]. Surface Technology, 48, 48-53(2019).

    [189] Liu Q, Dong G N. Effect of nanosecond pulsed laser parameters and texture machining methods on surface texture flattening[J]. Surface Technology, 48, 23-28, 47(2019).

    [190] Gudiksen M S, Lauhon L J, Wang J et al. Growth of nanowire superlattice structures for nanoscale photonics and electronics[J]. Nature, 415, 617-620(2002).

    [191] Zhang G Q, Takiguchi M, Tateno K et al. 5(2): eaat8896(2019).

    [192] Hwang I S, Choi J K, Kim S J et al. Enhanced H2S sensing characteristics of SnO2 nanowires functionalized with CuO[J]. Sensors and Actuators B, 142, 105-110(2009).

    [193] Bruchez M, Moronne M, Gin P et al. Semiconductor nanocrystals as fluorescent biological labels[J]. Science, 281, 2013-2016(1998).

    [194] Wu J, Ramsay A, Sanchez A et al. Defect-free self-catalyzed GaAs/GaAsP nanowire quantum dots grown on silicon substrate[J]. Nano Letters, 16, 504-511(2016).

    [195] Koga T, Cronin S B, Dresselhaus M S et al. Experimental proof-of-principle investigation of enhanced Z3DT in (001) oriented Si/Ge superlattices[J]. Applied Physics Letters, 77, 1490-1492(2000). http://scitation.aip.org/content/aip/journal/apl/77/10/10.1063/1.1308271

    [196] Wu Y Y, Fan R, Yang P D. Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires[J]. Nano Letters, 2, 83-86(2002).

    [197] Wu S J, Venugopal R, Chen Y T. Laser assisted catalytic growth of ZnS/CdSe core-shell and wire-coil nanowire heterostructures[J]. Journal of the Chinese Chemical Society, 52, 725-732(2005).

    [198] Choi J, Ji H, Tambunan O T et al. Brush-shaped ZnO heteronanorods synthesized using thermal-assisted pulsed laser deposition[J]. ACS Applied Materials & Interfaces, 3, 4682-4688(2011).

    [199] Hayden O, Greytak A, Bell D. Core-shell nanowire light-emitting diodes[J]. Advanced Materials, 17, 701-704(2005).

    [200] Park J A, Moon J, Lee S J et al. SnO2-ZnO hybrid nanofibers-based highly sensitive nitrogen dioxides sensor[J]. Sensors and Actuators B, 145, 592-595(2010).

    [201] Huo B, Hu L, Zhang H et al. ZnO/Zn0.85Mg0.15O superlattice nanoneedles grown by pulsed laser deposition[J]. Micro & Nano Letters, 3, 117-120(2008).

    [202] Qian F, Singh R K, Dutta S K et al. Laser deposition of diamondlike carbon films at high intensities[J]. Applied Physics Letters, 67, 3120-3122(1995).

    [203] Banks P S, Feit M D, Rubenchik A M et al. Material effects in ultra-short pulse laser drilling of metals[J]. Applied Physics A, 69, S377-S380(1999).

    [204] Eliezer S, Eliaz N, Grossman E et al. Synthesis of nanoparticles with femtosecond laser pulses[J]. Physical Review B, 69, 144119(2004).

    [205] Amoruso S, Ausanio G, Bruzzese R et al. Femtosecond laser pulse irradiation of solid targets as a general route to nanoparticle formation in a vacuum[J]. Physical Review B, 71, 033406(2005).

    [206] Liu B, Hu Z D, Che Y et al. Nanoparticle generation in ultrafast pulsed laser ablation of nickel[J]. Applied Physics Letters, 90, 044103(2007).

    Lisha Fan, Shuowen Zhang, Qunli Zhang, Jianhua Yao. Research Progress on Fabrication of One-Dimensional Well-Ordered Oxide Nanostructures by Pulsed Laser Deposition[J]. Laser & Optoelectronics Progress, 2020, 57(19): 190001
    Download Citation