• Journal of Semiconductors
  • Vol. 40, Issue 1, 011805 (2019)
Xiangqian Xiu, Liying Zhang, Yuewen Li, Zening Xiong, Rong Zhang, and Youdou Zheng
Author Affiliations
  • Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
  • show less
    DOI: 10.1088/1674-4926/40/1/011805 Cite this Article
    Xiangqian Xiu, Liying Zhang, Yuewen Li, Zening Xiong, Rong Zhang, Youdou Zheng. Application of halide vapor phase epitaxy for the growth of ultra-wide band gap Ga2O3[J]. Journal of Semiconductors, 2019, 40(1): 011805 Copy Citation Text show less
    References

    [1] R Roy, V G Hill, E F Osborn et al. Polymorphism of Ga2O3 and the system Ga2O3–H2O. J Am Chem Soc, 74, 719(1952).

    [2] H H Tippins. Optical absorption and photoconductivity in the band edge of β-Ga2O3. Phys Rev, 140, A316(1965).

    [3] H He, R Orlando, M A Blanco et al. First-principles study of structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases. Phys Rev B, 74, 195123(2006).

    [4] M Orita, H Ohta, M Hirano et al. Deep-ultraviolet transparent conductive β-Ga2O3 thin films. Appl Phys Lett, 77, 4166(2000).

    [5] T Onuma, S Fujioka, T Yamaguchi et al. Correlation between blue luminescence intensity and resistivity in β-Ga2O3 single crystals. Appl Phys Lett, 103, 041910(2013).

    [6] T Oshima, T Okuno, N Arai et al. Vertical solar-blind deep-ultraviolet Schottky photodetectors based on β-Ga2O3 substrates. Appl Phys Express, 1, 011202(2008).

    [7] E G Víllora, K Shimamura, K Kitamura et al. Epitaxial relationship between wurtzite GaN and β-Ga2O3. Appl Phys Lett, 90, 234102(2007).

    [8] E G Víllora, S Arjoca, K Shimamura et al. β-Ga2O3 and single-crystal phosphors for high-brightness white LEDs and LDs, and β-Ga2O3 potential for next generation of power devices. Proc SPIE, 8987, 89871U(2014).

    [9] K Sasaki, A Kuramata, T Masui et al. Device-quality β-Ga2O3 epitaxial films fabricated by ozone molecular beam epitaxy. Appl Phys Express, 5, 035502(2012).

    [10] M Higashiwaki, K Sasaki, A Kuramata et al. Gallium oxide (Ga2O3) metal–semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates. Appl Phys Lett, 100, 013504(2012).

    [11] M Higashiwaki, K Sasaki, T Kamimura et al. Depletion-mode Ga2O3 metal–oxide–semiconductor field-effect transistors on β-Ga2O3 (010) substrates and temperature dependence of their device characteristics. Appl Phys Lett, 103, 123511(2013).

    [12] Z Galazka, K Irmscher, R Uecker et al. On the bulk β-Ga2O3 single crystals grown by czochralski method. J Cryst Growth, 404, 184(2014).

    [13] N Ueda, H Hosono, R Waseda et al. Anisotropy of electrical and optical properties in β-Ga2O3 single crystals. Appl Phys Lett, 70, 3561(1997).

    [14] E G Villora, K Shimamura, Y Yoshikawa et al. Large-size β-Ga2O3 single crystals and wafers. J Cryst Growth, 270, 420(2004).

    [15] A Kuramata, K Koshi, S Watanabe et al. High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth. Jpn J Appl Phys, 55, 1202A(2016).

    [16] T Oshima, T Okuno, S Fujita. Ga2O3 thin film growth on c-plane sapphire substrates by molecular beam epitaxy for deep-ultraviolet photodetectors. Jpn J Appl Phys, 46, 7217(2007).

    [17] G Wagner, M Baldini, D Gogova et al. Homoepitaxial growth of β-Ga2O3 layers by metal-organic vapor phase epitaxy. Phys Status Solidi A, 211, 27(2014).

    [18] K Fujito, S Kubo, H Nagaoka et al. Bulk GaN crystals grown by HVPE. J Cryst Growth, 311, 3011(2009).

    [19] R Masuda, T Fujii, N Yoshii et al. Step-flow growth of homoepitaxial ZnO thin layers by halide vapor phase epitaxy using ZnCl2 and H2O source gases. J Cryst Growth, 312, 2324(2010).

    [20] Y Kumagai, Y Kubota, T Nagashima et al. Preparation of a freestanding AlN substrate from a thick AlN layer grown by hydride vapor phase epitaxy on a bulk AlN substrate prepared by physical vapor transport. Appl Phys Express, 5, 055504(2012).

    [21] K Nomura, K Goto, R Togashi et al. Thermodynamic study of β-Ga2O3 growth by halide vapor phase epitaxy. J Cryst Growth, 405, 19(2014).

    [22] Y Oshima, E G Vίllora, K Shimamura. Quasi-heteroepitaxial growth of β-Ga2O3 on off-angled sapphire (0001) substrates by halide vapor phase epitaxy. J Cryst Growth, 410, 53(2015).

    [23] N Suzuki, S Ohira, M Tanaka et al. Fabrication and characterization of transparent conductive Sn-doped β-Ga2O3 single crystals. Phys Status Solidi C, 4, 2310(2007).

    [24] M Slomski, N Blumenschein, P P Paskov et al. Anisotropic thermal conductivity of β-Ga2O3 at elevated temperatures: Effect of Sn and Fe dopants. J Appl Phys, 121, 235104(2017).

    [25] T Harwig, G J Wubs, G J Dirksen. Electrical properties of β-Ga2O3 single crystals. Solid State Commun, 18, 1223(1976).

    [26] T Matsumoto, M Aoki, A Kinoshita et al. Absorption and reflection of vapor grown single crystal platelets of β-Ga2O3. Jpn J Appl Phys, 13, 1578(1974).

    [27] E G Víllora, K Shimamura, K Kitamura et al. Rf-plasma-assisted molecular-beam epitaxy of β-Ga2O3. Appl Phys Lett, 88, 031105(2006).

    [28] M Y Tsai, O Bierwagen, M E White et al. β-Ga2O3 growth by plasma-assisted molecular beam epitaxy. J Vac Sci Technol, 28, 354(2010).

    [29] V Gottschalch, K Mergenthaler, G Wagner et al. Growth of β-Ga2O3 on Al2O3 and GaAs using metal-organic vapor-phase epitaxy. Phys Stat Solidi A, 206, 243(2009).

    [30] W Mi, J Ma, Z Zhu et al. Epitaxial growth of Ga2O3 thin films on MgO (110) substrate by metal–organic chemical vapor deposition. J Cryst Growth, 354, 93(2012).

    [31] F B Zhang, K Saito, T Tanaka et al. Structural and optical properties of Ga2O3 films on sapphire substrates by pulsed laser deposition. J Cryst Growth, 387, 96(2014).

    [32] Z N Xiong, X Q Xiu, Y W Li et al. Growth of β-Ga2O3 films on sapphire by HVPE. Chin Phys Lett, 35, 058101(2018).

    [33] M Orita, H Hiramatsu, H Ohta et al. Preparation of highly conductive, deep ultraviolet transparent β-Ga2O3 thin film at low deposition temperatures. Thin Solid Films, 411, 134(2002).

    [34] D Shinohara, S Fujita. Heteroepitaxy of corundum-structured α-Ga2O3 thin films on α-Al2O3 substrates by ultrasonic mist chemical vapor deposition. Jpn J Appl Phys, 47, 7311(2008).

    [35] T Kawaharamura, G T Dang, M Furuta. Successful growth of conductive highly crystalline Sn-doped α-Ga2O3 thin films by fine-channel mist chemical vapor deposition. Jpn J Appl Phys, 51, 040207(2012).

    [36] K Akaiwa, S Fujita. Electrical conductive corundum-structured α-Ga2O3 thin films on sapphire with tin-doping grown by spray-assisted mist chemical vapor deposition. Jpn J Appl Phys, 51, 070203(2012).

    [37] S Fujita, K Kaneko. Epitaxial growth of corundum-structured wide band gap III-oxide semiconductor thin films. J Cryst Growth, 401, 588(2014).

    [38] Y Oshima, E G Víllora, K Shimamura. Halide vapor phase epitaxy of twin-free α-Ga2O3 on sapphire (0001) substrates. Appl Phys Express, 8, 055501(2015).

    [39] Y Oshima, E G Víllora, Y Matsushita et al. Epitaxial growth of phase-pure ε-Ga2O3 by halide vapor phase epitaxy. J Appl Phys, 118, 085301(2015).

    [40] Y Yao, S Okur, A M Lyle et al. Growth and characterization of α-, β-, and ε-phases of Ga2O3 using MOCVD and HVPE techniques. Mater Res Lett, 6, 268(2018).

    [41] M Mohamed, K Irmscher, C Janowitz et al. Schottky barrier height of Au on the transparent semiconducting oxide β-Ga2O3. Appl Phys Lett, 101, 132106(2012).

    [42] S Oh, G Yang, J Kim. Electrical characteristics of vertical Ni/β-Ga2O3 schottky barrier diodes at high temperatures. ECS J Solid State Sci Technol, 6, Q3022(2017).

    [43] J Yang, S Ahn, F Ren et al. High reverse breakdown voltage Schottky rectifiers without edge termination on Ga2O3. Appl Phys Lett, 110, 192101(2017).

    [44] M Higashiwaki, K Konishi, K Sasaki et al. Temperature-dependent capacitance–voltage and current–voltage characteristics of Pt/Ga2O3 (001) Schottky barrier diodes fabricated on n-Ga2O3 drift layers grown by halide vapor phase epitaxy. Appl Phys Lett, 108, 133503(2016).

    [45] H Murakami, K Nomura, K Goto et al. Homoepitaxial growth of β-Ga2O3 layers by halide vapor phase epitaxy. Appl Phys Express, 8, 015503(2014).

    [46] Z Z Hu, H Zhou, Q Feng et al. Field-plated lateral β- Ga2O3 Schottky barrier diode with high reverse blocking voltage of more than 3 kV and high DC power figure-of-merit of 500 MW/cm2. IEEE Electron Device Lett, 39, 1564(2018).

    [47] M Higashiwaki, K Sasaki, H Murakami et al. Recent progress in Ga2O3 power devices. Semicond Sci Technol, 31, 034001(2016).

    [48] K Konishi, K Goto, H Murakami et al. 1-kV vertical Ga2O3 field-plated Schottky barrier diodes. Appl Phys Lett, 110, 103506(2017).

    [49] K Shimamura, E G Víllora, K Domen et al. Epitaxial growth of GaN on (100) β-Ga2O3 substrates by metalorganic vapor phase epitaxy. Jpn J Appl Phys, 44, L7(2004).

    [50] E G Víllora, K Shimamura, K Aoki et al. Molecular beam epitaxy of c-plane wurtzite GaN on nitridized a-plane β-Ga2O3. Thin Solid Films, 500, 209(2006).

    [51] Z L Xie, R Zhang, C T Xia et al. Demonstration of GaN/InGaN light emitting diodes on (100) beta-Ga2O3 substrates by metalorganic chemical vapour deposition. Chin Phys Lett, 25, 2185(2008).

    [52] I A Ajia, Y Yamashita, K Lorenz et al. GaN/AlGaN multiple quantum wells grown on transparent and conductive (-201)-oriented β-Ga2O3 substrate for UV vertical light emitting devices. Appl Phys Lett, 113, 082102(2018).

    [53] V M Krymov, S I Stepanov, N K Zhumashev et al. GaN growth on β-Ga2O3 substrates by HVPE. Mater Phys Mech, 22, 59(2015).

    [54] S Ito, K Takeda, K Nagata et al. Growth of GaN and AlGaN on (100) β-Ga2O3 substrates. Phys Status Solidi C, 9, 519(2012).

    [55] H J Lee, T I Shin, D H Yoon. Influence of NH3 gas for GaN epilayer on β-Ga2O3 substrate by nitridation. Surf Coat Tech, 202, 5497(2008).

    [56] K Kachel, M Korytov, D Gogova et al. A new approach to free-standing GaN using β-Ga2O3 as a substrate. CrystEngComm, 14, 8536(2012).

    [57] V I Nikolaev, A I Pechnikov, V N Maslov et al. GaN growth on β-Ga2O3 substrates by HVPE. Mater Phys Mechan, 22, 59(2015).

    [58] Y W Li, X Q Xiu, Z N Xiong et al. Single crystal GaN layer converted from β-Ga2O3 films and its application for free-Standing GaN. CrystEngComm(2019).

    Xiangqian Xiu, Liying Zhang, Yuewen Li, Zening Xiong, Rong Zhang, Youdou Zheng. Application of halide vapor phase epitaxy for the growth of ultra-wide band gap Ga2O3[J]. Journal of Semiconductors, 2019, 40(1): 011805
    Download Citation