• Photonics Research
  • Vol. 12, Issue 1, 115 (2024)
Jianing Wang1、2, Xi Wang1、2, Yihang Li1、2, Yanfu Yang2, Qinghai Song1、3, and Ke Xu1、2、*
Author Affiliations
  • 1Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, China
  • 2Department of Electronic & Information Engineering, Harbin Institute of Technology, Shenzhen 518055, China
  • 3Department of Science, Harbin Institute of Technology, Shenzhen 518055, China
  • show less
    DOI: 10.1364/PRJ.508024 Cite this Article Set citation alerts
    Jianing Wang, Xi Wang, Yihang Li, Yanfu Yang, Qinghai Song, Ke Xu. High-responsivity on-chip waveguide coupled germanium photodetector for 2 μm waveband[J]. Photonics Research, 2024, 12(1): 115 Copy Citation Text show less
    References

    [1] P. J. Roberts, F. Couny, H. Sabert. Ultimate low loss of hollow-core photonic crystal fibres. Opt. Express, 13, 236-244(2005).

    [2] Z. Li, A. M. Heidt, N. Simakov. Diode-pumped wideband thulium-doped fiber amplifiers for optical communications in the 1800–2050 nm window. Opt. Express, 21, 26450-26455(2013).

    [3] M. Lourenço, R. Gwilliam, K. Homewood. Eye-safe 2 μm luminescence from thulium-doped silicon. Opt. Lett., 36, 169-171(2011).

    [4] P. Lin, T. Wang, W. Ma. 2-μm free-space data transmission based on an actively mode-locked holmium-doped fiber laser. IEEE Photon. J., 32, 223-226(2020).

    [5] K. Xu, L. Sun, Y. Xie. Transmission of IM/DD signals at 2 μm wavelength using PAM and CAP. IEEE Photon. J., 8, 7906407(2016).

    [6] K. Xu, Q. Wu, Y. Xie. High speed single-wavelength modulation and transmission at 2 μm under bandwidth-constrained condition. Opt. Express, 25, 4528-4534(2017).

    [7] W. Shen, J. Du, L. Sun. Low-latency and high-speed hollow-core fiber optical interconnection at 2-micron waveband. J. Lightwave Technol., 38, 3874-3882(2020).

    [8] P. Lin, T. Wang, W. Ma. Transmission characteristics of 1.55 and 2.04 μm laser carriers in a simulated smoke channel based on an actively mode-locked fiber laser. Opt. Express, 28, 39216-39226(2020).

    [9] J. Li, Y. Liu, Y. Meng. 2-μm wavelength grating coupler, bent waveguide, and tunable microring on silicon photonic MPW. IEEE Photon. Technol. Lett., 30, 471-474(2018).

    [10] Y. Liu, Z. Li, D. Li. Thermo-optic tunable silicon arrayed waveguide grating at 2-μm wavelength band. IEEE Photon. J., 12, 4900308(2020).

    [11] Z. Wang, Y. Liu, Z. Wang. Ultra-broadband 3 dB power splitter from 1.55 to 2 μm wave band. Opt. Lett., 46, 4232-4235(2021).

    [12] H. Xie, Y. Liu, W. Sun. Inversely designed 1 × 4 power splitter with arbitrary ratios at 2-μm spectral band. IEEE Photon. J., 10, 2700506(2018).

    [13] M. A. Camp, S. Assefa, D. M. Gill. Demonstration of electrooptic modulation at 2165 nm using a silicon Mach-Zehnder interferometer. Opt. Express, 20, 28009-28016(2012).

    [14] W. Cao, D. Hagan, D. J. Thomson. High-speed silicon modulators for the 2 μm wavelength band. Optica, 5, 1055-1062(2018).

    [15] X. Wang, W. Shen, W. Li. High-speed silicon photonic Mach–Zehnder modulator at 2 μm. Photon. Res., 9, 535-540(2021).

    [16] W. Shen, G. Zhou, J. Du. High-speed silicon microring modulator at the 2 μm waveband with analysis and observation of optical bistability. Photon. Res., 10, A35-A42(2022).

    [17] Y. Wu, X. Guo, X. Wang. Silicon photonic tunable flat-top filters based on CROW structures at 2-μm spectral range. Optical Fiber Communication Conference and Exhibition, W2A.4(2023).

    [18] W. He, Y. Sun, P. Zhou. Subwavelength structure engineered passband filter for the 2-μm wave band. Opt. Lett., 48, 827-830(2023).

    [19] T. Yu, Y. Liu, Z. Li. Integrated thermo-optic switch for 2-μm spectral band. Optoelectronic Devices and Integration, OTu2B.4(2019).

    [20] N. Ye, H. Yang, M. Gleeson. InGaAs surface normal photodiode for 2 μm optical communication systems. IEEE Photon. Technol. Lett., 4, 1469-1472(2015).

    [21] Y. Chen, Z. Xie, J. Huang. High-speed uni-traveling carrier photodiode for 2 μm wavelength application. Optica, 6, 884-889(2019).

    [22] J. Wun, Y. Wang, Y. Chen. GaSb-based p-i-n photodiodes with partially depleted absorbers for high-speed and high-power performance at 2.5-μm wavelength. IEEE Trans. Electron. Devices, 63, 2796-2801(2016).

    [23] W. Wang, D. Lei, Y. Huang. High-performance GeSn photodetector and fin field-effect transistor (FinFET) on an advanced GeSn-on-insulator platform. Opt. Express, 26, 10305-10314(2018).

    [24] Y. Dong, W. Wang, S. Xu. Two-micron-wavelength germanium-tin photodiodes with low dark current and gigahertz bandwidth. Opt. Express, 25, 15818-15827(2017).

    [25] S. Xu, W. Wang, Y. Huang. High-speed photo detection at two-micron-wavelength: technology enablement by GeSn/Ge multiple-quantum-well photodiode on 300 mm Si substrate. Opt. Express, 27, 5798-5813(2019).

    [26] X. Wang, Z. Cheng, K. Xu. High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nat. Photonics, 7, 888-891(2013).

    [27] B. Zhu, M. Chen, Q. Zhu. Integrated plasmonic infrared photodetector based on colloidal HgTe quantum dots. Adv. Mater. Technol., 4, 1900354(2019).

    [28] J. J. Ackert, D. J. Thomson, L. Shen. High-speed detection at two micrometres with monolithic silicon photodiodes. Nat. Photonics, 9, 393-396(2015).

    [29] B. Souhan, C. Chen, R. R. Grote. Error-free operation of an all-silicon waveguide photodiode at 1.9 μm. IEEE Photon. J., 25, 2031-2034(2013).

    [30] R. Anthony, D. E. Hagan, D. Genuth-Okon. Extended wavelength responsivity of a germanium photodetector integrated with a silicon waveguide exploiting the indirect transition. IEEE. J. Sel. Top. Quantum Electron., 26, 3800107(2019).

    [31] B. Wang, J. Mu. High-speed Si-Ge avalanche photodiodes. PhotoniX, 3, 8(2022).

    [32] J. Kou, K. K. Tian, C. Chu. Optimization strategy of 4H-SiC separated absorption charge and multiplication avalanche photodiode structure for high ultraviolet detection efficiency. Nanoscale Res. Lett., 14, 396(2019).

    [33] Y. Okuto, C. R. Crowell. Ionization coefficients in semiconductors: a nonlocalized property. Phys. Rev. B, 10, 4284-4296(1974).

    [34] L. Colace, G. Assanto. Germanium on silicon for near-infrared light sensing. IEEE Photon. J., 1, 69-79(2013).

    [35] S. J. Koester, J. D. Schaub, G. Dehlinger. Germanium-on-SOI infrared detectors for integrated photonic applications. IEEE J. Sel. Top. Quantum Electron., 12, 1489-1502(2006).

    [36] H. G. Lipson, E. Burstein, P. L. Smith. Optical properties of plastically deformed germanium. Phys. Rev., 99, 444-445(1955).

    [37] Y. Suh, M. S. Carroll, R. A. Levy. Phosphorus and boron implantation into (100) germanium. MRS Online Proceedings Library, 809, 811(2003).

    [38] S. C. Jain, R. P. Mertens, R. J. Van Overstraeten. Bandgap narrowing and its effects on the properties of moderately and heavily doped germanium and silicon. Adv. Electron. Electron Phys., 82, 197-275(1991).

    [39] D. R. Decker, C. N. Dunn. Determination of germanium ionization coefficients from small-signal IMPATT diode characteristics. IEEE Trans. Electron Dev., 17, 290-299(1970).

    [40] P. Yuan, K. A. Anselm, C. Hu. A new look at impact ionization-Part II: gain and noise in short avalanche photodiodes. IEEE Trans. Electron Dev., 46, 1632-1639(1999).

    [41] J. Kim, M. Ji, T. Detchprohm. AlxGa1−xN ultraviolet avalanche photodiodes with avalanche gain greater than 105. IEEE Photon. Technol. Lett., 27, 642-645(2015).

    [42] H. Kamiyama, T. Toyonaka, K. Motoda. Novel method to determine the unity gain responsivity of avalanche photodiodes. 31st European Conference on Optical Communication (ECOC), 491-492(2005).

    Jianing Wang, Xi Wang, Yihang Li, Yanfu Yang, Qinghai Song, Ke Xu. High-responsivity on-chip waveguide coupled germanium photodetector for 2 μm waveband[J]. Photonics Research, 2024, 12(1): 115
    Download Citation