• Acta Optica Sinica
  • Vol. 40, Issue 22, 2206003 (2020)
Yan An1、2、*, Keyan Dong1、2, Xiang Li1、2, Lun Jiang1、2, and Liang Gao1、2
Author Affiliations
  • 1School of Opto-Electronic Engineering, Changchun University of Science and Technology, Changchun, Jilin 130022, China
  • 2National and Local Joint Engineering Research Center, Changchun University of Science and Technology, Changchun, Jilin 130022, China
  • show less
    DOI: 10.3788/AOS202040.2206003 Cite this Article Set citation alerts
    Yan An, Keyan Dong, Xiang Li, Lun Jiang, Liang Gao. Design of Laser Communication Optical System with Microlens Array Based on 3×3 Optical Matrix[J]. Acta Optica Sinica, 2020, 40(22): 2206003 Copy Citation Text show less
    References

    [1] Arnon S. Optimization of urban optical wireless communication systems[J]. IEEE Transactions on Wireless Communications, 2, 626-629(2003).

    [2] Jiang H L, Fu Q, Zhao Y W et al. Development status and trend of space information network and laser communication[J]. Chinese Journal on Internet of Things, 3, 1-8(2019).

    [3] Liu X N, Li C C, Li X L et al. New technologies of space laser communication for the space-ground integrated information network[J]. Journal of Telemetry, Tracking and Command, 40, 1-7(2019).

    [4] Zoran S, Hans S, Marc S et al. LLCD operations using the Lunar Lasercom OGS Terminal[J]. Proceedings of SPIE, 8971, 89710(2014).

    [5] Suryakant G, Amit G G, Sharan S. Optical design of off-axis Cassegrain telescope using freeform surface at the secondary mirror[J]. Optical Engineering, 54, 025113(2015). http://spie.org/x648.xml?product_id=2191006

    [6] Takahashi K, Arimoto Y. Compact optical antennas using free-form surface optics for ultrahigh-speed laser communication systems[J]. Optical Engineering, 47, 016002(2008).

    [7] Arimoto Y, Yoshida H, Kisara K. Wide field-of-view single-mode-fiber coupled laser communication terminal[J]. Proceedings of SPIE, 8610, 861008(2013).

    [8] Arimoto Y. Operational condition for direct single-mode-fiber coupled free-space optical terminal under strong atmospheric turbulence[J]. Optical Engineering, 51, 031203(2012).

    [9] Deng P, Yuan X H, Mohsen K et al. Off-axis catadioptric fisheye wide field-of-view optical receiver for free space optical communications[J]. Optical Engineering, 51, 063002(2012).

    [10] Lu H Q, Zhao W, Hu H et al. Effects of beam misalignment on space laser communication systems[J]. High Power Laser and Particle Beams, 23, 895-900(2011).

    [11] Tillkorn C, Heimes A, Flamm D et al. Anamorphic beam shaping for efficient laser homogenization: methods and high power applications[J]. Proceedings of SPIE, 1051, 105181I(2018).

    [12] Deng H X, Gao X C, Ma M C et al. Catadioptric planar compound eye with large field of view[J]. Optics Express, 26, 12455-12468(2018).

    [13] Chen X, Song Y, Zhang W G et al. Imaging method based on the combination of microlens arrays and aperture arrays[J]. Applied Optics, 57, 5392-5398(2018).

    [14] Alexander B, Uwe D Z. Wave optical analysis of light-emitting diode beam shaping using microlens arrays[J]. Optical Engineering, 41, 2393-2401(2002).

    [15] Maik Z, Norbert L, Reinhard V et al. Microlens laser beam homogenizer: from theory to application[J]. Proceedings of SPIE, 6663, 201-213(2007).

    [16] Yin Z Y, Wang Y F, Jia W W et al. Performance analysis of beam integrator system based on microlens array[J]. Chinese Journal of Lasers, 39, 0702007(2012).

    [17] Peter S, Sergey K, Peter D et al. Homogeneous LED-illumination using microlens arrays[J]. Proceeding of SPIE, 5942, 59420K(2005).

    [18] Wippermann F, Zeitner U D, Dannberg P et al. Beam homogenizers based on chirped microlens arrays[J]. Optics Express, 15, 6218-6231(2007).

    [19] Wang Z X, Zhu G Z, Huang Y et al. Analytical model of microlens array system homogenizer[J]. Optics & Laser Technology, 75, 214-220(2015).

    [20] Jin Y H, Hassan A, Jiang Y J. Freeform microlens array homogenizer for excimer laser beam shaping[J]. Optics Express, 24, 24846-24858(2016).

    [21] Cao A X, Pang H, Wang J Z et al. The effects of profile errors of microlens surfaces on laser beam homogenization[J]. Micromachines, 8, 50(2017).

    [22] Jolly A, Machinet G, Boullet J. Sets of microlens arrays to finely shape homogenized focal spots[J]. Journal of the Optical Society of America B, 36, 1067-1075(2019).

    [23] Norbert L. Design and modeling of a miniature system containing micro-optics[J]. Proceeding of SPIE, 4437, 1-13(2010).

    [24] Lindlein N. Simulation of micro-optical systems including microlens arrays[J]. Journal of Optics A: Pure and Applied Optics, 4, S1-S9(2002).

    [25] Lei C Q, Wang Y F, Yin Z Y et al. Homogenization system for diode laser stack beams based on microlens array[J]. Chinese Journal of Lasers, 42, 0502009(2015).

    [26] Zhao W, Liu X, Li H F. Design of laser projection display illumination system based on freeform surface array[J]. Acta Optica Sinica, 38, 0622001(2018).

    [27] Ma J, Pan F, Tan L Y et al. Measurement of statistical properties of laser irradiance scintillation and link margin evaluation over densely urbanised terrain[J]. High Power Laser and Particle Beams, 19, 1257-1260(2007).

    [28] Xu Y Y, Dong K Y, An Y et al. Analysis of the influence of defocus on the field of view of laser communication reception[J]. Chinese Optics, 11, 822-831(2018).

    Yan An, Keyan Dong, Xiang Li, Lun Jiang, Liang Gao. Design of Laser Communication Optical System with Microlens Array Based on 3×3 Optical Matrix[J]. Acta Optica Sinica, 2020, 40(22): 2206003
    Download Citation