[1] Lim C S, Kim E S, Kim J Y et al. Measurement of the nucleus area and nucleus/cytoplasm and mitochondria/nucleus ratios in human colon tissues by dual-colour two-photon microscopy imaging[J]. Scientific Reports, 5, 1-11(2015).
[2] Kampmann M, Atkinson C E, Mattheyses A L et al. Mapping the orientation of nuclear pore proteins in living cells with polarized fluorescence microscopy[J]. Nature Structural & Molecular Biology, 18, 643-649(2011).
[3] Okabe K, Inada N, Gota C et al. Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy[J]. Nature Communications, 3, 1-9(2012).
[4] Summers P A, Lewis B W, Gonzalez-Garcia J et al. Visualising G-quadruplex DNA dynamics in live cells by fluorescence lifetime imaging microscopy[J]. Nature Communications, 12, 1-11(2021).
[5] Schermelleh L, Ferrand A, Huser T et al. Super-resolution microscopy demystified[J]. Nature Cell Biology, 21, 72-84(2019).
[6] Abbe E. Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung[J]. Archiv Für Mikroskopische Anatomie, 9, 413-418(1873).
[7] Moerner W E, Kador L. Optical detection and spectroscopy of single molecules in a solid[J]. Physical Review Letters, 62, 2535-2538(1989).
[8] Dickson R M, Cubitt A B, Tsien R Y et al. On/off blinking and switching behaviour of single molecules of green fluorescent protein[J]. Nature, 388, 355-358(1997).
[9] Betzig E, Patterson G H, Sougrat R et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 313, 1642-1645(2006).
[10] Rust M J, Bates M, Zhuang X W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 3, 793-796(2006).
[11] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 19, 780-782(1994).
[12] Gustafsson M G. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J]. Journal of Microscopy, 198, 82-87(2000).
[13] Sigal Y M, Zhou R B, Zhuang X W. Visualizing and discovering cellular structures with super-resolution microscopy[J]. Science, 361, 880-887(2018).
[14] Qiao C, Chen X Y, Zhang S W et al. 3D structured illumination microscopy via channel attention generative adversarial network[J]. IEEE Journal of Selected Topics in Quantum Electronics, 27, 6801711(2021).
[15] Vicidomini G, Bianchini P, Diaspro A. STED super-resolved microscopy[J]. Nature Methods, 15, 173-182(2018).
[16] Balzarotti F, Eilers Y, Gwosch K C et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes[J]. Science, 355, 606-612(2017).
[17] Xiao J, Ha T. Flipping nanoscopy on its head[J]. Science, 355, 582-584(2017).
[18] Eilers Y, Ta H S, Gwosch K C et al. MINFLUX monitors rapid molecular jumps with superior spatiotemporal resolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 115, 6117-6122(2018).
[19] Gwosch K C, Pape J K, Balzarotti F et al. MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells[J]. Nature Methods, 17, 217-224(2020).
[20] Pape J K, Stephan T, Balzarotti F et al. Multicolor 3D MINFLUX nanoscopy of mitochondrial MICOS proteins[J]. Proceedings of the National Academy of Sciences of the United States of America, 117, 20607-20614(2020).
[21] Masullo L A, Steiner F, Zähringer J et al. Pulsed interleaved MINFLUX[J]. Nano Letters, 21, 840-846(2021).
[22] Schmidt R, Weihs T, Wurm C A et al. MINFLUX nanometer-scale 3D imaging and microsecond-range tracking on a common fluorescence microscope[J]. Nature Communications, 12, 1478(2021).
[23] Masullo L A, Szalai A M, Lopez L F et al. An alternative to MINFLUX that enables nanometer resolution in a confocal microscope[J]. Light: Science & Applications, 11, 1-9(2022).
[24] Masullo L A, Stefani F D. Multiphoton single-molecule localization by sequential excitation with light minima[J]. Light: Science & Applications, 11, 1-4(2022).
[25] Zhao K, Xu X Z, Ren W et al. Two-photon MINFLUX with doubled localization precision[J]. eLight, 2, 1-10(2022).
[26] Müller C B, Enderlein J. Image scanning microscopy[J]. Physical Review Letters, 104, 198101(2010).
[28] Cnossen J, Hinsdale T, Thorsen R Ø et al. Localization microscopy at doubled precision with patterned illumination[J]. Nature Methods, 17, 59-63(2020).
[29] Weber M, Leutenegger M, Stoldt S et al. MINSTED fluorescence localization and nanoscopy[J]. Nature Photonics, 15, 361-366(2021).
[30] Schnitzbauer J, Strauss M T, Schlichthaerle T et al. Super-resolution microscopy with DNA-PAINT[J]. Nature Protocols, 12, 1198-1228(2017).
[31] Ostersehlt L M, Jans D C, Wittek A et al. DNA-PAINT MINFLUX nanoscopy[J]. Nature Methods, 19, 1072-1075(2022).
[32] Dertinger T, Colyer R, Iyer G et al. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI)[J]. Proceedings of the National Academy of Sciences of the United States of America, 106, 22287-22292(2009).
[33] Dertinger T, Colyer R, Vogel R et al. Achieving increased resolution and more pixels with superresolution optical fluctuation imaging (SOFI)[J]. Optics Express, 18, 18875-18885(2010).
[34] Geissbuehler S, Dellagiacoma C, Lasser T. Comparison between sofi and storm[J]. Biomedical Optics Express, 2, 408-420(2011).
[35] Michalet X, Pinaud F F, Bentolila L A et al. Quantum dots for live cells, in vivo imaging, and diagnostics[J]. Science, 307, 538-544(2005).
[36] Murray C B, Kagan C R, Bawendi M G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies[J]. Annual Review of Materials Science, 30, 545-610(2000).
[37] Zeng Z P, Chen X Z, Wang H N et al. Fast super-resolution imaging with ultra-high labeling density achieved by joint tagging super-resolution optical fluctuation imaging[J]. Scientific Reports, 5, 1-7(2015).
[38] Grußmayer K S, Geissbuehler S, Descloux A et al. Spectral cross-cumulants for multicolor super-resolved SOFI imaging[J]. Nature Communications, 11, 1-8(2020).
[39] Uno S N, Kamiya M, Yoshihara T et al. A spontaneously blinking fluorophore based on intramolecular spirocyclization for live-cell super-resolution imaging[J]. Nature Chemistry, 6, 681-689(2014).
[40] Grußmayer K, Lukes T, Lasser T et al. Self-blinking dyes unlock high-order and multiplane super-resolution optical fluctuation imaging[J]. ACS Nano, 14, 9156-9165(2020).
[41] Dedecker P, Mo G C H, Dertinger T et al. Widely accessible method for superresolution fluorescence imaging of living systems[J]. Proceedings of the National Academy of Sciences of the United States of America, 109, 10909-10914(2012).
[42] Glogger M, Spahn C, Enderlein J et al. Multi-color, bleaching-resistant super-resolution optical fluctuation imaging with oligonucleotide-based exchangeable fluorophores[J]. Angewandte Chemie, 60, 6310-6313(2021).
[43] Kim M, Park C, Rodriguez C et al. Superresolution imaging with optical fluctuation using speckle patterns illumination[J]. Scientific Reports, 5, 1-10(2015).
[44] Yi X Y, Son S, Ando R et al. Moments reconstruction and local dynamic range compression of high order superresolution optical fluctuation imaging[J]. Biomedical Optics Express, 10, 2430-2445(2019).
[45] Geissbuehler S, Bocchio N L, Dellagiacoma C et al. Mapping molecular statistics with balanced super-resolution optical fluctuation imaging (bSOFI)[J]. Optical Nanoscopy, 1, 1-7(2012).
[46] Dedecker P, Duwé S, Neely R K et al. Localizer: fast, accurate, open-source, and modular software package for superresolution microscopy[J]. Journal of Biomedical Optics, 17, 126008(2012).
[47] Moeyaert B, Vandenberg W, Dedecker P. SOFIevaluator: a strategy for the quantitative quality assessment of SOFI data[J]. Biomedical Optics Express, 11, 636-648(2020).
[48] Girsault A, Lukes T, Sharipov A et al. SOFI simulation tool: a software package for simulating and testing super-resolution optical fluctuation imaging[J]. PLoS One, 11, e0161602(2016).
[49] Geissbuehler S, Sharipov A, Godinat A et al. Live-cell multiplane three-dimensional super-resolution optical fluctuation imaging[J]. Nature Communications, 5, 1-7(2014).
[51] Sroda A, Makowski A, Tenne R et al. SOFISM: super-resolution optical fluctuation image scanning microscopy[J]. Optica, 7, 1308-1316(2020).
[52] Aßmann M. Quantum-optically enhanced STORM (QUEST) for multi-emitter localization[J]. Scientific Reports, 8, 1-12(2018).
[53] Mo G C H, Ross B, Hertel F et al. Genetically encoded biosensors for visualizing live-cell biochemical activity at super-resolution[J]. Nature Methods, 14, 427-434(2017).
[54] Giovannetti V, Lloyd S, Maccone L. Quantum-enhanced measurements: beating the standard quantum limit[J]. Science, 306, 1330-1336(2004).
[55] Brida G, Genovese M, Ruo Berchera I. Experimental realization of sub-shot-noise quantum imaging[J]. Nature Photonics, 4, 227-230(2010).
[56] Tsang M. Quantum imaging beyond the diffraction limit by optical centroid measurements[J]. Physical Review Letters, 102, 253601(2009).
[57] Giovannetti V, Lloyd S, Maccone L et al. Sub-Rayleigh-diffraction-bound quantum imaging[J]. Physical Review A, 79, 013827(2009).
[58] D’Angelo M, Chekhova M V, Shih Y. Two-photon diffraction and quantum lithography[J]. Physical Review Letters, 87, 013602(2001).
[59] Walls D F, Zoller P. Reduced quantum fluctuations in resonance fluorescence[J]. Physical Review Letters, 47, 709-711(1981).
[60] Mandel L. Sub-Poissonian photon statistics in resonance fluorescence[J]. Optics Letters, 4, 205-207(1979).
[61] Senellart P, Solomon G, White A. High-performance semiconductor quantum-dot single-photon sources[J]. Nature Nanotechnology, 12, 1026-1039(2017).
[62] Kimble H J, Dagenais M, Mandel L. Photon antibunching in resonance fluorescence[J]. Physical Review Letters, 39, 691-695(1977).
[63] Schwartz O, Oron D. Improved resolution in fluorescence microscopy using quantum correlations[J]. Physical Review A, 85, 033812(2012).
[64] Schwartz O, Levitt J M, Tenne R et al. Superresolution microscopy with quantum emitters[J]. Nano Letters, 13, 5832-5836(2013).
[65] Cui J M, Sun F W, Chen X D et al. Quantum statistical imaging of particles without restriction of the diffraction limit[J]. Physical Review Letters, 110, 153901(2013).
[66] Monticone D G, Katamadze K, Traina P et al. Beating the Abbe diffraction limit in confocal microscopy via nonclassical photon statistics[J]. Physical Review Letters, 113, 143602(2014).
[67] Israel Y, Tenne R, Oron D et al. Quantum correlation enhanced super-resolution localization microscopy enabled by a fibre bundle camera[J]. Nature Communications, 8, 14786(2017).
[68] Classen A, von Zanthier J, Scully M O et al. Superresolution via structured illumination quantum correlation microscopy[J]. Optica, 4, 580-587(2017).
[69] Tenne R, Rossman U, Rephael B et al. Super-resolution enhancement by quantum image scanning microscopy[J]. Nature Photonics, 13, 116-122(2019).
[70] Li W W, Wang Z Y. Breaking the diffraction limit using fluorescence quantum coherence[J]. Optics Express, 30, 12684-12694(2022).
[71] LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 521, 436-444(2015).
[72] Alom M Z, Taha T M, Yakopcic C et al. A state-of-the-art survey on deep learning theory and architectures[J]. Electronics, 8, 292(2019).
[73] Fukushima K. Neocognitron: a hierarchical neural network capable of visual pattern recognition[J]. Neural Networks, 1, 119-130(1988).
[74] Goodfellow I, Pouget-Abadie J, Mirza M et al. Generative adversarial networks[J]. Communications of the ACM, 63, 139-144(2020).
[75] Cheng J R, Yang Y, Tang X Y et al. Generative adversarial networks: a literature review[J]. KSII Transactions on Internet and Information Systems, 14, 4625-4647(2020).
[76] Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation[M]. Navab N, Hornegger J, Wells W M, et al. Medical image computing and computer-assisted intervention-MICCAI 2015. Lecture notes in computer science, 9351, 234-241(2015).
[77] Rivenson Y, Göröcs Z, Günaydin H et al. Deep learning microscopy[J]. Optica, 4, 1437-1443(2017).
[78] Wang H D, Rivenson Y, Jin Y Y et al. Deep learning enables cross-modality super-resolution in fluorescence microscopy[J]. Nature Methods, 16, 103-110(2019).
[79] Zhang H, Fang C Y, Xie X L et al. High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network[J]. Biomedical Optics Express, 10, 1044-1063(2019).
[80] Li X Y, Zhang G X, Qiao H et al. Unsupervised content-preserving transformation for optical microscopy[J]. Light: Science & Applications, 10, 1-11(2021).
[81] Jin L H, Liu B, Zhao F Q et al. Deep learning enables structured illumination microscopy with low light levels and enhanced speed[J]. Nature Communications, 11, 1-7(2020).
[82] Qiao C, Li D, Guo Y T et al. Evaluation and development of deep neural networks for image super-resolution in optical microscopy[J]. Nature Methods, 18, 194-202(2021).
[83] Ling C, Zhang C L, Wang M Q et al. Fast structured illumination microscopy via deep learning[J]. Photonics Research, 8, 1350-1359(2020).
[84] Zhang Q N, Chen J W, Li J S et al. Deep learning-based single-shot structured illumination microscopy[J]. Optics and Lasers in Engineering, 155, 107066(2022).
[85] Ouyang W, Aristov A, Lelek M et al. Deep learning massively accelerates super-resolution localization microscopy[J]. Nature Biotechnology, 36, 460-468(2018).
[86] Gaire S K, Zhang Y, Li H Y et al. Accelerating multicolor spectroscopic single-molecule localization microscopy using deep learning[J]. Biomedical Optics Express, 11, 2705-2721(2020).
[87] Speiser A, Müller L R, Hoess P et al. Deep learning enables fast and dense single-molecule localization with high accuracy[J]. Nature Methods, 18, 1082-1090(2021).
[88] Nehme E, Weiss L E, Michaeli T et al. Deep-STORM: super-resolution single-molecule microscopy by deep learning[J]. Optica, 5, 458-464(2018).
[89] Fang L J, Monroe F, Novak S W et al. Deep learning-based point-scanning super-resolution imaging[J]. Nature Methods, 18, 406-416(2021).