• Photonics Research
  • Vol. 10, Issue 7, 1731 (2022)
Shoujun Zhang1, Xieyu Chen1, Kuan Liu2, Haiyang Li2, Yuehong Xu1, Xiaohan Jiang1, Yihan Xu1, Qingwei Wang1, Tun Cao2、4、*, and Zhen Tian1、3、5、*
Author Affiliations
  • 1Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Optoelectronic Information Technology (Ministry of Education of China), Tianjin University, Tianjin 300072, China
  • 2School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
  • 3Georgia Tech Shenzhen Institute (GTSI), Tianjin University, Shenzhen 518067, China
  • 4e-mail: caotun1806@dlut.edu.cn
  • 5e-mail: tianzhen@tju.edu.cn
  • show less
    DOI: 10.1364/PRJ.456161 Cite this Article Set citation alerts
    Shoujun Zhang, Xieyu Chen, Kuan Liu, Haiyang Li, Yuehong Xu, Xiaohan Jiang, Yihan Xu, Qingwei Wang, Tun Cao, Zhen Tian. Nonvolatile reconfigurable dynamic Janus metasurfaces in the terahertz regime[J]. Photonics Research, 2022, 10(7): 1731 Copy Citation Text show less
    References

    [1] C.-W. Qiu, T. Zhang, G. Hu, Y. Kivshar. Quo vadis, metasurfaces?. Nano Lett., 21, 5461-5474(2021).

    [2] X. Chen, Z. Tian, Y. Lu, Y. Xu, X. Zhang, C. Ouyang, J. Gu, J. Han, W. Zhang. Electrically tunable perfect terahertz absorber based on a graphene Salisbury screen hybrid metasurface. Adv. Opt. Mater., 8, 1900660(2020).

    [3] F. Zhao, Z. Li, X. Dai, X. Liao, S. Li, J. Cao, Z. Shang, Z. Zhang, G. Liang, G. Chen. Broadband achromatic sub-diffraction focusing by an amplitude-modulated terahertz metalens. Adv. Opt. Mater., 8, 2000842(2020).

    [4] L. Cong, Y. K. Srivastava, H. Zhang, X. Zhang, J. Han, R. Singh. All-optical active THz metasurfaces for ultrafast polarization switching and dynamic beam splitting. Light Sci. Appl., 7, 28(2018).

    [5] S. Venkatesh, X. Lu, H. Saeidi, K. Sengupta. A high-speed programmable and scalable terahertz holographic metasurface based on tiled CMOS chips. Nat. Electron., 3, 785-793(2020).

    [6] Q. Wang, E. Plum, Q. Yang, X. Zhang, Q. Xu, Y. Xu, J. Han, W. Zhang. Reflective chiral meta-holography: multiplexing holograms for circularly polarized waves. Light Sci. Appl., 7, 25(2018).

    [7] Y. Xu, H. Zhang, Q. Li, X. Zhang, Q. Xu, W. Zhang, C. Hu, X. Zhang, J. Han, W. Zhang. Generation of terahertz vector beams using dielectric metasurfaces via spin-decoupled phase control. Nanophotonics, 9, 3393-3402(2020).

    [8] Y. Yang, Y. Yamagami, X. Yu, P. Pitchappa, J. Webber, B. Zhang, M. Fujita, T. Nagatsuma, R. Singh. Terahertz topological photonics for on-chip communication. Nat. Photonics, 14, 446-451(2020).

    [9] X. Zhao, C. Chen, K. Kaj, I. Hammock, Y. Huang, R. D. Averitt, X. Zhang. Terahertz investigation of bound states in the continuum of metallic metasurfaces. Optica, 7, 1548-1554(2020).

    [10] S. Han, L. Cong, Y. K. Srivastava, B. Qiang, M. V. Rybin, A. Kumar, R. Jain, W. X. Lim, V. G. Achanta, S. S. Prabhu. All-dielectric active terahertz photonics driven by bound states in the continuum. Adv. Mater., 31, 1901921(2019).

    [11] A. Nemati, Q. Wang, M. Hong, J. Teng. Tunable and reconfigurable metasurfaces and metadevices. Opto-Electron. Adv., 1, 18000901(2018).

    [12] Z. Gong, F. Yang, L. Wang, R. Chen, J. Wu, C. P. Grigoropoulos, J. Yao. Phase change materials in photonic devices. J. Appl. Phys., 129, 030902(2021).

    [13] L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu. Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes. Light Sci. Appl., 4, e253(2015).

    [14] F. Hu, Y. Deng, W. Saad, M. Bennis, A. H. Aghvami. Cellular-connected wireless virtual reality: requirements, challenges, and solutions. IEEE Commun. Mag., 58, 105-111(2020).

    [15] I. Kim, M. A. Ansari, M. Q. Mehmood, W. S. Kim, J. Jang, M. Zubair, Y. K. Kim, J. Rho. Stimuli-responsive dynamic metaholographic displays with designer liquid crystal modulators. Adv. Mater., 32, 2004664(2020).

    [16] H.-T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt. Active terahertz metamaterial devices. Nature, 444, 597-600(2006).

    [17] J. Zhou, D. R. Chowdhury, R. Zhao, A. K. Azad, H.-T. Chen, C. M. Soukoulis, A. J. Taylor, J. F. O’Hara. Terahertz chiral metamaterials with giant and dynamically tunable optical activity. Phys. Rev. B, 86, 035448(2012).

    [18] L. Wang, M. Eliceiri, Y. Deng, Y. Rho, W. Shou, H. Pan, J. Yao, C. P. Grigoropoulos. Fast reversible phase change silicon for visible active photonics. Adv. Funct. Mater., 30, 1910784(2020).

    [19] E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, M. Faraji-Dana, A. Faraon. MEMS-tunable dielectric metasurface lens. Nat. Commun., 9, 812(2018).

    [20] M. Manjappa, P. Pitchappa, N. Singh, N. Wang, N. I. Zheludev, C. Lee, R. Singh. Reconfigurable MEMS Fano metasurfaces with multiple-input–output states for logic operations at terahertz frequencies. Nat. Commun., 9, 4056(2018).

    [21] C. Meng, P. C. Thrane, F. Ding, J. Gjessing, M. Thomaschewski, C. Wu, C. Dirdal, S. I. Bozhevolnyi. Dynamic piezoelectric MEMS-based optical metasurfaces. Sci. Adv., 7, eabg5639(2021).

    [22] S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi. Switching terahertz waves with gate-controlled active graphene metamaterials. Nat. Mater., 11, 936-941(2012).

    [23] Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, W. Zhang. Active graphene–silicon hybrid diode for terahertz waves. Nat. Commun., 6, 7082(2015).

    [24] X. Chen, Z. Tian, J. Wang, Y. Yuan, X. Zhang, C. Ouyang, J. Gu, J. Han, W. Zhang. Hysteretic behavior in ion gel-graphene hybrid terahertz modulator. Carbon, 155, 514-520(2019).

    [25] L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, S. Zhang. Broadband metasurfaces with simultaneous control of phase and amplitude. Adv. Mater., 26, 5031-5036(2014).

    [26] M. Liu, E. Plum, H. Li, S. Duan, S. Li, Q. Xu, X. Zhang, C. Zhang, C. Zou, B. Jin. Switchable chiral mirrors. Adv. Opt. Mater., 8, 2000247(2020).

    [27] P. Pitchappa, A. Kumar, S. Prakash, H. Jani, T. Venkatesan, R. Singh. Chalcogenide phase change material for active terahertz photonics. Adv. Mater., 31, 1808157(2019).

    [28] K. Makino, K. Kato, Y. Saito, P. Fons, A. V. Kolobov, J. Tominaga, T. Nakano, M. Nakajima. Terahertz spectroscopic characterization of Ge2Sb2Te5 phase change materials for photonics applications. J. Mater. Chem. C, 7, 8209-8215(2019).

    [29] P. Pitchappa, A. Kumar, S. Prakash, H. Jani, R. Medwal, M. Mishra, R. S. Rawat, T. Venkatesan, N. Wang, R. Singh. Volatile ultrafast switching at multilevel nonvolatile states of phase change material for active flexible terahertz metadevices. Adv. Funct. Mater., 31, 2100200(2021).

    [30] M. Wuttig, N. Yamada. Phase-change materials for rewriteable data storage. Nat. Mater., 6, 824-832(2007).

    [31] A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, T. Uruga. Understanding the phase-change mechanism of rewritable optical media. Nat. Mater., 3, 703-708(2004).

    [32] S. Abdollahramezani, O. Hemmatyar, H. Taghinejad, A. Krasnok, Y. Kiarashinejad, M. Zandehshahvar, A. Alù, A. Adibi. Tunable nanophotonics enabled by chalcogenide phase-change materials. Nanophotonics, 9, 1189-1241(2020).

    [33] M. Wuttig, H. Bhaskaran, T. Taubner. Phase-change materials for non-volatile photonic applications. Nat. Photonics, 11, 465-476(2017).

    [34] C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, W. H. Pernice. Integrated all-photonic non-volatile multi-level memory. Nat. Photonics, 9, 725-732(2015).

    [35] Z. Cheng, C. Ríos, N. Youngblood, C. D. Wright, W. H. Pernice, H. Bhaskaran. Device-level photonic memories and logic applications using phase-change materials. Adv. Mater., 30, 1802435(2018).

    [36] N. Farmakidis, N. Youngblood, X. Li, J. Tan, J. L. Swett, Z. Cheng, C. D. Wright, W. H. Pernice, H. Bhaskaran. Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality. Sci. Adv., 5, eaaw2687(2019).

    [37] T. Tuma, A. Pantazi, M. Le Gallo, A. Sebastian, E. Eleftheriou. Stochastic phase-change neurons. Nat. Nanotechnol., 11, 693-699(2016).

    [38] J. Feldmann, M. Stegmaier, N. Gruhler, C. Ríos, H. Bhaskaran, C. Wright, W. Pernice. Calculating with light using a chip-scale all-optical abacus. Nat. Commun., 8, 1256(2017).

    [39] Z. Cheng, C. Ríos, W. H. Pernice, C. D. Wright, H. Bhaskaran. On-chip photonic synapse. Sci. Adv., 3, e1700160(2017).

    [40] P. Hosseini, C. D. Wright, H. Bhaskaran. An optoelectronic framework enabled by low-dimensional phase-change films. Nature, 511, 206-211(2014).

    [41] K.-K. Du, Q. Li, Y.-B. Lyu, J.-C. Ding, Y. Lu, Z.-Y. Cheng, M. Qiu. Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST. Light Sci. Appl., 6, e16194(2017).

    [42] C. R. de Galarreta, I. Sinev, A. M. Alexeev, P. Trofimov, K. Ladutenko, S. G.-C. Carrillo, E. Gemo, A. Baldycheva, J. Bertolotti, C. D. Wright. Reconfigurable multilevel control of hybrid all-dielectric phase-change metasurfaces. Optica, 7, 476-484(2020).

    [43] L. Mao, Y. Li, G. Li, S. Zhang, T. Cao. Reversible switching of electromagnetically induced transparency in phase change metasurfaces. Adv. Photon., 2, 056004(2020).

    [44] P. Yu, J. Li, S. Zhang, Z. Jin, G. Schütz, C.-W. Qiu, M. Hirscher, N. J. Liu. Dynamic Janus metasurfaces in the visible spectral region. Nano Lett., 18, 4584-4589(2018).

    [45] Y. Chen, X. Yang, J. Gao. 3D Janus plasmonic helical nanoapertures for polarization-encrypted data storage. Light Sci. Appl., 8, 45(2019).

    [46] K. Chen, G. Ding, G. Hu, Z. Jin, J. Zhao, Y. Feng, T. Jiang, A. Alù, C. W. Qiu. Directional Janus metasurface. Adv. Mater., 32, 1906352(2020).

    [47] Y. Su, Y. Li, T. Yang, T. Han, Y. Sun, J. Xiong, L. Wu, C. W. Qiu. Path-dependent thermal metadevice beyond Janus functionalities. Adv. Mater., 33, 2003084(2021).

    [48] H. Lu, E. Thelander, J. W. Gerlach, U. Decker, B. Zhu, B. Rauschenbach. Single pulse laser-induced phase transitions of PLD-deposited Ge2Sb2Te5 films. Adv. Funct. Mater., 23, 3621-3627(2013).

    [49] D. Chiang, T.-R. Jeng, D.-R. Huang, Y.-Y. Chang, C.-P. Liu. Kinetic crystallization behavior of phase-change medium. Jpn. J. Appl. Phys., 38, 1649-1651(1999).

    [50] S. Yu, L. Li, G. Shi, C. Zhu, Y. Shi. Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain. Appl. Phys. Lett., 108, 241901(2016).

    [51] S. Tang, T. Cai, G.-M. Wang, J.-G. Liang, X. Li, J. Yu. High-efficiency dual-modes vortex beam generator with polarization-dependent transmission and reflection properties. Sci. Rep., 8, 6422(2018).

    [52] S. Raoux, F. Xiong, M. Wuttig, E. Pop. Phase change materials and phase change memory. MRS Bull., 39, 703-710(2014).

    [53] A. Pirovano, A. Redaelli, F. Pellizzer, F. Ottogalli, M. Tosi, D. Ielmini, A. L. Lacaita, R. Bez. Reliability study of phase-change nonvolatile memories. IEEE Trans. Device Mater. Reliab., 4, 422-427(2004).

    [54] R. E. Simpson, P. Fons, A. V. Kolobov, T. Fukaya, M. Krbal, T. Yagi, J. Tominaga. Interfacial phase-change memory. Nat. Nanotechnol., 6, 501-505(2011).

    [55] S.-H. Lee, Y. Jung, R. Agarwal. Highly scalable non-volatile and ultra-low-power phase-change nanowire memory. Nat. Nanotechnol., 2, 626-630(2007).

    [56] I. Kim, S. Cho, D. Im, E. Cho, D. Kim, G. Oh, D. Ahn, S. Park, S. Nam, J. Moon. High performance PRAM cell scalable to sub-20 nm technology with below 4F2 cell size, extendable to DRAM applications. Symposium on VLSI Technology, 203-204(2010).

    Shoujun Zhang, Xieyu Chen, Kuan Liu, Haiyang Li, Yuehong Xu, Xiaohan Jiang, Yihan Xu, Qingwei Wang, Tun Cao, Zhen Tian. Nonvolatile reconfigurable dynamic Janus metasurfaces in the terahertz regime[J]. Photonics Research, 2022, 10(7): 1731
    Download Citation