• Acta Optica Sinica
  • Vol. 38, Issue 6, 0616001 (2018)
Qinglan Ma1、3、*, Shuqing Ma2, Haibao Shao1、3, Honghai Deng1、3, Zhiliang Wang1、3, Jing Huang1、3, Haihong Yin1、3, and Zhenjuan Zhang1、3
Author Affiliations
  • 1 School of Electronics and Information, Nantong University, Nantong, Jiangsu 226019, China
  • 2 Watang Teaching Affairs Department, Xingxian Bureau of Education, Xingxian, Shanxi 0 33600, China
  • 3 School of General Microelectronics, Nantong University, Nantong, Jiangsu 226000, China
  • show less
    DOI: 10.3788/AOS201838.0616001 Cite this Article Set citation alerts
    Qinglan Ma, Shuqing Ma, Haibao Shao, Honghai Deng, Zhiliang Wang, Jing Huang, Haihong Yin, Zhenjuan Zhang. Photoluminescence Performance of Morphology-Tunable Eu 3+-doped Zinc Molybdenum Oxide Hydrate [J]. Acta Optica Sinica, 2018, 38(6): 0616001 Copy Citation Text show less
    References

    [1] Spassky D. Vasil'ev A, Kamenskikh I, et al. Luminescence investigation of zinc molybdate single crystals[J]. Physics Status Solidi, 206, 1579-1583(2009).

    [2] Mikhailik V B, Kraus H, Wahl D et al. Optical and luminescence studies of ZnMoO4 using vacuum ultraviolet synchrotron radiation[J]. Nuclear Instrument & Methods in Physics Research A, 562, 513-516(2006). http://www.sciencedirect.com/science/article/pii/S016890020600489X

    [3] Spassky D A, Mikhailin V V, Savon A E et al. Low temperature luminescence of ZnMoO4 single crystals grown by low temperature gradient Czochralski technique[J]. Optical Materials, 34, 1804-1810(2012). http://www.sciencedirect.com/science/article/pii/S0925346712002236

    [4] Zhou L Y, Wei J S, Gong F Z et al. A potential red phosphor ZnMoO4∶Eu 3+ for light-emitting diode application [J]. Journal of Solid State Chemistry, 181, 1337-1341(2008). http://www.sciencedirect.com/science/article/pii/S0022459608001369

    [5] Xie A, Yuan X, Wang F et al. Enhanced red emission in ZnMoO4∶Eu 3+ by charge compensation [J]. Journal of Physics D, 43, 055101(2010).

    [6] Yu L X, Nogami M. The synthesis and photoluminescent properties of one-dimensional ZnMoO4∶Eu 3+ nanocrystals [J]. Materials Letters, 64, 1644-1646(2010). http://www.sciencedirect.com/science/article/pii/S0167577X10003113

    [7] Chengaiah T, Jayasankar C K, Pavani K et al. Preparation and luminescence characterization of Zn(1-x)MoO4∶xDy 3+ phosphor for white light-emitting diodes [J]. Optics Communications, 312, 233-237(2014). http://www.sciencedirect.com/science/article/pii/S003040181300761X

    [8] Ju X, Li X, Li W et al. Luminescence properties of ZnMoO4∶Tb 3+ green phosphor prepared via co-precipitation [J]. Materials Letters, 65, 2642-2644(2011). http://www.sciencedirect.com/science/article/pii/S0167577X11006240

    [9] Spassky D A, Kamenskikh I A, Savon A E et al. Electronic structure and luminescence mechanisms in ZnMoO4 crystals[J]. Journal of Physics, 23, 365501(2011). http://www.ncbi.nlm.nih.gov/pubmed/21857097

    [10] Zhai B G, Yang L, Ma Q L et al. Growth of ZnMoO4 nanowires via vapor deposition in air[J]. Materials Letters, 188, 119-122(2017). http://www.sciencedirect.com/science/article/pii/S0167577X16317943

    [11] Peng C, Gao L, Yang S W et al. A general precipitation strategy for large-scale synthesis of molybdate nanostructures[J]. Chemistry Communications, 43, 5601-5603(2008). http://www.ncbi.nlm.nih.gov/pubmed/18997965

    [12] Cascales C, Balda R. Fern a'ndez J, et al. Fluorescence line narrowing spectroscopy of Eu 3+ in TeO2-TiO2-Nb2O5 glass [J]. Optical Materials, 31, 1092-1095(2009).

    [13] Seo H J. Line broadening and crystallographic sites for Eu 3+ in disordered double borate Ca3Gd2(BO3)4[J]. Journal of Alloy Compound, 604, 100-105(2014). http://www.sciencedirect.com/science/article/pii/S0925838814006823

    [14] Novais S M V, Macedo Z S. Local atomic arrangement and scintillation properties of Eu- and Ce-doped NaYP2O7[J]. Journal of Solid State Chemistry, 233, 103-107(2016). http://www.osti.gov/scitech/biblio/22573997-local-atomic-arrangement-scintillation-properties-eu-ce-doped-nayp-sub-sub

    [15] Ege A, Ayvacikli M, Dinçer O et al. Spectral emission of rare earth (Tb, Eu, Dy) doped Y2Sn2O7 phosphors[J]. Journal of Luminescence, 143, 653-656(2013). http://www.sciencedirect.com/science/article/pii/S0022231313003086

    [16] Chen C H, Yang G H, Meng L L et al. Effect of alkaline earth ion co-doping on photoluminescence from europium ion in Ca12Al14O32F2[J]. Acta Optica Sinica, 37, 1030001(2017).

    [17] Wang L X. Effect of synthesis conditions on luminescence properties of (Eu0. 045Li3xLuy)2O3 nanocrystals by precipitation[J]. Acta Optica Sinica, 36, 0316001(2016).

    [18] Torsello G, Lomascolo M, Licciulli A et al. The origin of highly efficient selective emission in rare-earth oxides for thermophotovoltaic applications[J]. Nature Materials, 3, 632-637(2004). http://www.ncbi.nlm.nih.gov/pubmed/15322534

    [19] Ma Q L, Xiong R, Huang Y M. Tunable photoluminescence of porous silicon by liquid crystal infiltration[J]. Journal of Luminescence, 131, 2053-2057(2011). http://www.sciencedirect.com/science/article/pii/S0022231311002523

    [20] Ma Q L, Zhai B G, Huang Y M. Sol-gel derived ZnO/porous silicon composites for tunable photoluminescence[J]. Journal of Sol-Gel Science and Technology, 64, 110-116(2012). http://link.springer.com/article/10.1007/s10971-012-2836-1

    [21] Ma Q L, Zhai B G, Huang Y M. Dopant concentration dependent photoluminescence and afterglow of SrAl2O4∶Dy 3+ phosphors [J]. Materials Research Innovation, 19, s40-s44(2015). http://www.tandfonline.com/doi/full/10.1179/1432891715Z.0000000002050

    [22] Zhai B G, Yang L, Ma Q L et al. Mechanism of the prolongation of the green afterglow of SrAl2O4∶Dy 3+ caused by the use of H3BO3 flux [J]. Journal of Luminescence, 181, 78-87(2017).

    Qinglan Ma, Shuqing Ma, Haibao Shao, Honghai Deng, Zhiliang Wang, Jing Huang, Haihong Yin, Zhenjuan Zhang. Photoluminescence Performance of Morphology-Tunable Eu 3+-doped Zinc Molybdenum Oxide Hydrate [J]. Acta Optica Sinica, 2018, 38(6): 0616001
    Download Citation