• Photonics Research
  • Vol. 7, Issue 6, 630 (2019)
Baijun Li1, Ran Huang1, Xunwei Xu2, Adam Miranowicz3、4、5, and Hui Jing1、6
Author Affiliations
  • 1Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China
  • 2Department of Applied Physics, East China Jiaotong University, Nanchang 330013, China
  • 3Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
  • 4Faculty of Physics, Adam Mickiewicz University, 61-614 Poznan, Poland
  • 5e-mail: miran@amu.edu.pl
  • 6e-mail: jinghui73@gmail.com
  • show less
    DOI: 10.1364/PRJ.7.000630 Cite this Article Set citation alerts
    Baijun Li, Ran Huang, Xunwei Xu, Adam Miranowicz, Hui Jing. Nonreciprocal unconventional photon blockade in a spinning optomechanical system[J]. Photonics Research, 2019, 7(6): 630 Copy Citation Text show less
    References

    [1] L. Tian, H. J. Carmichael. Quantum trajectory simulations of two-state behavior in an optical cavity containing one atom. Phys. Rev. A, 46, R6801-R6804(1992).

    [2] W. Leoński, R. Tanaś. Possibility of producing the one-photon state in a kicked cavity with a nonlinear Kerr medium. Phys. Rev. A, 49, R20-R23(1994).

    [3] A. Imamoḡlu, H. Schmidt, G. Woods, M. Deutsch. Strongly interacting photons in a nonlinear cavity. Phys. Rev. Lett., 79, 1467-1470(1997).

    [4] K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, H. J. Kimble. Photon blockade in an optical cavity with one trapped atom. Nature (London), 436, 87-90(2005).

    [5] K. Müller, A. Rundquist, K. A. Fischer, T. Sarmiento, K. G. Lagoudakis, Y. A. Kelaita, C. S. Muñoz, E. del Valle, F. P. Laussy, J. Vučković. Coherent generation of nonclassical light on chip via detuned photon blockade. Phys. Rev. Lett., 114, 233601(2015).

    [6] X. Gu, A. F. Kockum, A. Miranowicz, Y.-X. Liu, F. Nori. Microwave photonics with superconducting quantum circuits. Phys. Rep., 718–719, 1-102(2017).

    [7] V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, M. Peev. The security of practical quantum key distribution. Rev. Mod. Phys., 81, 1301-1350(2009).

    [8] I. Buluta, S. Ashhab, F. Nori. Natural and artificial atoms for quantum computation. Rep. Prog. Phys., 74, 104401(2011).

    [9] T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, V. Vuletić. Quantum nonlinear optics with single photons enabled by strongly interacting atoms. Nature (London), 488, 57-60(2012).

    [10] C. Lang, D. Bozyigit, C. Eichler, L. Steffen, J. M. Fink, A. A. Abdumalikov, M. Baur, S. Filipp, M. P. da Silva, A. Blais, A. Wallraff. Observation of resonant photon blockade at microwave frequencies using correlation function measurements. Phys. Rev. Lett., 106, 243601(2011).

    [11] A. J. Hoffman, S. J. Srinivasan, S. Schmidt, L. Spietz, J. Aumentado, H. E. Türeci, A. A. Houck. Dispersive photon blockade in a superconducting circuit. Phys. Rev. Lett., 107, 053602(2011).

    [12] A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, J. Vučković. Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade. Nat. Phys., 4, 859-863(2008).

    [13] S. Ferretti, L. C. Andreani, H. E. Türeci, D. Gerace. Photon correlations in a two-site nonlinear cavity system under coherent drive and dissipation. Phys. Rev. A, 82, 013841(2010).

    [14] J.-Q. Liao, C. K. Law. Correlated two-photon transport in a one-dimensional waveguide side-coupled to a nonlinear cavity. Phys. Rev. A, 82, 053836(2010).

    [15] A. Miranowicz, M. Paprzycka, Y.-X. Liu, J. Bajer, F. Nori. Two-photon and three-photon blockades in driven nonlinear systems. Phys. Rev. A, 87, 023809(2013).

    [16] P. Rabl. Photon blockade effect in optomechanical systems. Phys. Rev. Lett., 107, 063601(2011).

    [17] A. Nunnenkamp, K. Børkje, S. M. Girvin. Single-photon optomechanics. Phys. Rev. Lett., 107, 063602(2011).

    [18] J.-Q. Liao, F. Nori. Photon blockade in quadratically coupled optomechanical systems. Phys. Rev. A, 88, 023853(2013).

    [19] H. Xie, G.-W. Lin, X. Chen, Z.-H. Chen, X.-M. Lin. Single-photon nonlinearities in a strongly driven optomechanical system with quadratic coupling. Phys. Rev. A, 93, 063860(2016).

    [20] C. Zhai, R. Huang, B. Li, H. Jing, L.-M. Kuang. Mechanical engineering of photon blockades in a cavity optomechanical system(2019).

    [21] W. Leoński, A. Miranowicz. Kerr nonlinear coupler and entanglement. J. Opt. B, 6, S37-S42(2004).

    [22] A. Miranowicz, W. Leoński. Two-mode optical state truncation and generation of maximally entangled states in pumped nonlinear couplers. J. Phys. B, 39, 1683-1700(2006).

    [23] T. C. H. Liew, V. Savona. Single photons from coupled quantum modes. Phys. Rev. Lett., 104, 183601(2010).

    [24] M. Bamba, A. Imamoğlu, I. Carusotto, C. Ciuti. Origin of strong photon antibunching in weakly nonlinear photonic molecules. Phys. Rev. A, 83, 021802(2011).

    [25] A. Majumdar, M. Bajcsy, A. Rundquist, J. Vučković. Loss-enabled sub-Poissonian light generation in a bimodal nanocavity. Phys. Rev. Lett., 108, 163601(2012).

    [26] S. Ferretti, V. Savona, D. Gerace. Optimal antibunching in passive photonic devices based on coupled nonlinear resonators. New J. Phys., 15, 025012(2013).

    [27] P. Kómár, S. D. Bennett, K. Stannigel, S. J. M. Habraken, P. Rabl, P. Zoller, M. D. Lukin. Single-photon nonlinearities in two-mode optomechanics. Phys. Rev. A, 87, 013839(2013).

    [28] V. Savona. Unconventional photon blockade in coupled optomechanical systems(2013).

    [29] X.-W. Xu, Y.-J. Li. Antibunching photons in a cavity coupled to an optomechanical system. J. Phys. B, 46, 035502(2013).

    [30] X.-W. Xu, Y. Li. Strong photon antibunching of symmetric and antisymmetric modes in weakly nonlinear photonic molecules. Phys. Rev. A, 90, 033809(2014).

    [31] W. Zhang, Z. Y. Yu, Y. M. Liu, Y. W. Peng. Optimal photon antibunching in a quantum-dot-bimodal-cavity system. Phys. Rev. A, 89, 043832(2014).

    [32] H. Z. Shen, Y. H. Zhou, X. X. Yi. Tunable photon blockade in coupled semiconductor cavities. Phys. Rev. A, 91, 063808(2015).

    [33] H. Flayac, V. Savona. Unconventional photon blockade. Phys. Rev. A, 96, 053810(2017).

    [34] H. Flayac, V. Savona. Nonclassical statistics from a polaritonic Josephson junction. Phys. Rev. A, 95, 043838(2017).

    [35] F. Zhou, D.-G. Lai, J.-Q. Liao. Photon blockade effect in a coupled cavity system(2018).

    [36] H. J. Snijders, J. A. Frey, J. Norman, H. Flayac, V. Savona, A. C. Gossard, J. E. Bowers, M. P. van Exter, D. Bouwmeester, W. Löffler. Observation of the unconventional photon blockade. Phys. Rev. Lett., 121, 043601(2018).

    [37] C. Vaneph, A. Morvan, G. Aiello, M. Féchant, M. Aprili, J. Gabelli, J. Estève. Observation of the unconventional photon blockade in the microwave domain. Phys. Rev. Lett., 121, 043602(2018).

    [38] A. Miranowicz, W. Leoński, N. Imoto. Quantum-optical states in finite-dimensional Hilbert space. I. General formalism. Modern Nonlinear Optics, 119, 195-213(2001).

    [39] W. Leoński, A. Miranowicz. Quantum-optical states in finite-dimensional Hilbert space. II. State generation. Adv. Chem. Phys., 119, 155-193(2003).

    [40] I. Carusotto, C. Ciuti. Quantum fluids of light. Rev. Mod. Phys., 85, 299-366(2013).

    [41] S. Manipatruni, J. T. Robinson, M. Lipson. Optical nonreciprocity in optomechanical structures. Phys. Rev. Lett., 102, 213903(2009).

    [42] Z. Shen, Y.-L. Zhang, Y. Chen, C.-L. Zou, Y.-F. Xiao, X.-B. Zou, F.-W. Sun, G.-C. Guo, C.-H. Dong. Experimental realization of optomechanically induced non-reciprocity. Nat. Photonics, 10, 657-661(2016).

    [43] N. R. Bernier, L. D. Tóth, A. Koottandavida, M. A. Ioannou, D. Malz, A. Nunnenkamp, A. K. Feofanov, T. J. Kippenberg. Nonreciprocal reconfigurable microwave optomechanical circuit. Nat. Commun., 8, 604(2017).

    [44] Q.-T. Cao, H. Wang, C.-H. Dong, H. Jing, R.-S. Liu, X. Chen, L. Ge, Q. Gong, Y.-F. Xiao. Experimental demonstration of spontaneous chirality in a nonlinear microresonator. Phys. Rev. Lett., 118, 033907(2017).

    [45] L. D. Bino, J. M. Silver, M. T. M. Woodley, S. L. Stebbings, X. Zhao, P. Del’Haye. Microresonator isolators and circulators based on the intrinsic nonreciprocity of the Kerr effect. Optica, 5, 279-282(2018).

    [46] Y. Shi, Z. Yu, S. Fan. Limitations of nonlinear optical isolators due to dynamic reciprocity. Nat. Photonics, 9, 388-392(2015).

    [47] L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, M. Qi. An all-silicon passive optical diode. Science, 335, 447-450(2012).

    [48] S. Zhang, Y. Hu, G. Lin, Y. Niu, K. Xia, J. Gong, S. Gong. Thermal-motion-induced non-reciprocal quantum optical system. Nat. Photonics, 12, 744-748(2018).

    [49] K. Y. Xia, F. Nori, M. Xiao. Cavity-free optical isolators and circulators using a chiral cross-Kerr nonlinearity. Phys. Rev. Lett., 121, 203602(2018).

    [50] D. L. Sounas, A. Alù. Non-reciprocal photonics based on time modulation. Nat. Photonics, 11, 774-783(2017).

    [51] C. Caloz, A. Alù, S. Tretyakov, D. Sounas, K. Achouri, Z.-L. Deck-Léger. Electromagnetic nonreciprocity. Phys. Rev. Appl., 10, 047001(2018).

    [52] N. Bender, S. Factor, J. D. Bodyfelt, H. Ramezani, D. N. Christodoulides, F. M. Ellis, T. Kottos. Observation of asymmetric transport in structures with active nonlinearities. Phys. Rev. Lett., 110, 234101(2013).

    [53] B. Peng, S. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, L. Yang. Parity-time-symmetric whispering-gallery microcavities. Nat. Phys., 10, 394-398(2014).

    [54] L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, M. Xiao. Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators. Nat. Photonics, 8, 524-529(2014).

    [55] S. Maayani, R. Dahan, Y. Kligerman, E. Moses, A. U. Hassan, H. Jing, F. Nori, D. N. Christodoulides, T. Carmon. Flying couplers above spinning resonators generate irreversible refraction. Nature (London), 558, 569-572(2018).

    [56] H. Lü, Y. Jiang, Y. Z. Wang, H. Jing. Optomechanically induced transparency in a spinning resonator. Photon. Res., 5, 367-371(2017).

    [57] H. Jing, H. Lü, S. K. Özdemir, T. Carmon, F. Nori. Nanoparticle sensing with a spinning resonator. Optica, 5, 1424-1430(2018).

    [58] K. Y. Xia, G. W. Lu, G. W. Lin, Y. Q. Cheng, Y. P. Niu, S. Q. Gong, J. Twamley. Reversible nonmagnetic single-photon isolation using unbalanced quantum coupling. Phys. Rev. A, 90, 043802(2014).

    [59] L. Tang, J. S. Tang, W. D. Zhang, G. W. Lu, Y. Zhang, K. Y. Xia, M. Xiao. An on-chip chiral single-photon interface: isolation and unidirectional emission(2018).

    [60] M. Scheucher, A. Hilico, E. Will, J. Volz, A. Rauschenbeutel. Quantum optical circulator controlled by a single chirally coupled atom. Science, 354, 1577-1580(2016).

    [61] B. Abdo, K. Sliwa, S. Shankar, M. Hatridge, L. Frunzio, R. Schoelkopf, M. Devoret. Josephson directional amplifier for quantum measurement of superconducting circuits. Phys. Rev. Lett., 112, 167701(2014).

    [62] A. Metelmann, A. A. Clerk. Nonreciprocal photon transmission and amplification via reservoir engineering. Phys. Rev. X, 5, 021025(2015).

    [63] D. Malz, L. D. Tóth, N. R. Bernier, A. K. Feofanov, T. J. Kippenberg, A. Nunnenkamp. Quantum-limited directional amplifiers with optomechanics. Phys. Rev. Lett., 120, 023601(2018).

    [64] Z. Shen, Y.-L. Zhang, Y. Chen, F.-W. Sun, X. B. Zou, G. C. Guo, C.-L. Zou, C. H. Dong. Reconfigurable optomechanical circulator and directional amplifier. Nat. Commun., 9, 1797(2018).

    [65] A. Y. Song, Y. Shi, Q. Lin, S. Fan. Direction-dependent parity-time phase transition and non-reciprocal directional amplification with dynamic gain–loss modulation. Phys. Rev. A, 99, 013824(2019).

    [66] S. Barzanjeh, M. Aquilina, A. Xuereb. Manipulating the flow of thermal noise in quantum devices. Phys. Rev. Lett., 120, 060601(2018).

    [67] R. Huang, A. Miranowicz, J.-Q. Liao, F. Nori, H. Jing. Nonreciprocal photon blockade. Phys. Rev. Lett., 121, 153601(2018).

    [68] X.-W. Xu, Y.-J. Zhao, H. Wang, H. Jing, A.-X. Chen. Nonreciprocal photon blockade via quadratic optomechanical coupling(2018).

    [69] P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, P. Zoller. Chiral quantum optics. Nature, 541, 473-480(2017).

    [70] V. V. Konotop, J. K. Yang, D. A. Zezyulin. Nonlinear waves in PT-symmetric systems. Rev. Mod. Phys., 88, 035002(2016).

    [71] R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H. Musslimani, S. Rotter, D. N. Christodoulides. Non-Hermitian physics and PT symmetry. Nat. Phys., 14, 11-19(2018).

    [72] J. Zhang, B. Peng, S. K. Özdemir, K. Pichler, D. O. Krimer, G. M. Zhao, F. Nori, Y.-X. Liu, S. Rotter, L. Yang. A phonon laser operating at an exceptional point. Nat. Photonics, 12, 479-484(2018).

    [73] I. S. Grudinin, H. Lee, O. Painter, K. J. Vahala. Phonon laser action in a tunable two-level system. Phys. Rev. Lett., 104, 083901(2010).

    [74] H. Jing, S. K. Özdemir, X.-Y. Lü, J. Zhang, L. Yang, F. Nori. PT-symmetric phonon laser. Phys. Rev. Lett., 113, 053604(2014).

    [75] H. Lü, S. K. Özdemir, L.-M. Kuang, F. Nori, H. Jing. Exceptional points in random-defect phonon lasers. Phys. Rev. Appl., 8, 044020(2017).

    [76] Y. Jiang, S. Maayani, T. Carmon, F. Nori, H. Jing. Nonreciprocal phonon laser. Phys. Rev. Appl., 10, 064037(2018).

    [77] H. Zhang, F. Salf, Y. Jiao, H. Jing. Loss-induced transparency in optomechanics. Opt. Express, 26, 25199-25210(2018).

    [78] Z.-P. Liu, J. Zhang, S. K. Özdemir, B. Peng, H. Jing, X.-Y. Lü, C.-W. Li, L. Yang, F. Nori, Y.-X. Liu. Metrology with PT-symmetric cavities: enhanced sensitivity near the PT-phase transition. Phys. Rev. Lett., 117, 110802(2016).

    [79] S. M. Spillane, T. J. Kippenberg, O. J. Painter, K. J. Vahala. Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics. Phys. Rev. Lett., 91, 043902(2003).

    [80] H. Schmidt, A. Imamoḡlu. Giant Kerr nonlinearities obtained by electromagnetically induced transparency. Opt. Lett., 21, 1936-1938(1996).

    [81] Y.-P. Wang, G.-Q. Zhang, D. Zhang, T.-F. Li, C.-M. Hu, J. Q. You. Bistability of cavity magnon polaritons. Phys. Rev. Lett., 120, 057202(2018).

    [82] Z. R. Gong, H. Ian, Y.-X. Liu, C. P. Sun, F. Nori. Effective Hamiltonian approach to the Kerr nonlinearity in an optomechanical system. Phys. Rev. A, 80, 065801(2009).

    [83] L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, I. Favero. Wavelength-sized GaAs optomechanical resonators with gigahertz frequency. Appl. Phys. Lett., 98, 113108(2011).

    [84] H. Snijders, J. A. Frey, J. Norman, M. P. Bakker, E. C. Langman, A. Gossard, J. E. Bowers, M. P. Van Exter, D. Bouwmeester, W. Löffler. Purification of a single-photon nonlinearity. Nat. Commun., 7, 12578(2016).

    [85] G. Enzian, M. Szczykulska, J. Silver, L. Del Bino, S. Zhang, I. A. Walmsley, P. Del’Haye, M. R. Vanner. Observation of Brillouin optomechanical strong coupling with an 11  GHz mechanical mode. Optica, 6, 7-14(2019).

    [86] G. B. Malykin. The Sagnac effect: correct and incorrect explanations. Phys. Usp., 43, 1229-1252(2000).

    [87] G. W. Ford, J. T. Lewis, R. F. O’Connell. Quantum Langevin equation. Phys. Rev. A, 37, 4419-4428(1988).

    [88] C. W. Gardiner, P. Zoller. Quantum Noise(2000).

    [89] D. F. Walls, G. J. Milburn. Quantum Optics(1994).

    [90] J. R. Johansson, P. D. Nation, F. Nori. Qutip 2: a Python framework for the dynamics of open quantum systems. Comput. Phys. Commun., 184, 1234-1240(2013).

    [91] E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, T. J. Kippenberg. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature (London), 482, 63-67(2012).

    [92] M. Aspelmeyer, T. J. Kippenberg, F. Marquardt. Cavity optomechanics. Rev. Mod. Phys., 86, 1391-1452(2014).

    [93] J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, R. W. Simmonds. Sideband cooling of micromechanical motion to the quantum ground state. Nature (London), 475, 359-363(2011).

    [94] K. J. Vahala. Optical microcavities. Nature (London), 424, 839-846(2003).

    [95] V. Huet, A. Rasoloniaina, P. Guillemé, P. Rochard, P. Féron, M. Mortier, A. Levenson, K. Bencheikh, A. Yacomotti, Y. Dumeige. Millisecond photon lifetime in a slow-light microcavity. Phys. Rev. Lett., 116, 133902(2016).

    [96] J. Hloušek, M. Dudka, I. Straka, M. Ježek. Accurate detection of arbitrary photon statistics(2018).

    [97] R. Reimann, M. Doderer, E. Hebestreit, R. Diehl, M. Frimmer, D. Windey, F. Tebbenjohanns, L. Novotny. GHz rotation of an optically trapped nanoparticle in vacuum. Phys. Rev. Lett., 121, 033602(2018).

    [98] J. Ahn, Z. Xu, J. Bang, Y.-H. Deng, T. M. Hoang, Q. Han, R.-M. Ma, T. Li. Optically levitated nanodumbbell torsion balance and GHz nanomechanical rotor. Phys. Rev. Lett., 121, 033603(2018).

    [99] F. Reiter, T. L. Nguyen, J. P. Home, S. F. Yelin. Cooperative breakdown of the oscillator blockade in the Dicke model(2018).

    [100] M. Radulaski, K. A. Fischer, K. G. Lagoudakis, J. L. Zhang, J. Vučković. Photon blockade in two-emitter-cavity systems. Phys. Rev. A, 96, 011801(2017).

    [101] M. B. Plenio, P. L. Knight. The quantum-jump approach to dissipative dynamics in quantum optics. Rev. Mod. Phys., 70, 101-144(1998).

    CLP Journals

    [1] Guo-Qing Qin, Min Wang, Jing-Wei Wen, Dong Ruan, Gui-Lu Long. Brillouin cavity optomechanics sensing with enhanced dynamical backaction[J]. Photonics Research, 2019, 7(12): 1440

    [2] C. J. Zhu, K. Hou, Y. P. Yang, L. Deng. Hybrid level anharmonicity and interference-induced photon blockade in a two-qubit cavity QED system with dipole–dipole interaction[J]. Photonics Research, 2021, 9(7): 1264

    [3] Xunwei Xu, Yanjun Zhao, Hui Wang, Aixi Chen, Yu-Xi Liu. Nonreciprocal transition between two nondegenerate energy levels[J]. Photonics Research, 2021, 9(5): 879

    [4] Luqi Yuan, Avik Dutt, Mingpu Qin, Shanhui Fan, Xianfeng Chen. Creating locally interacting Hamiltonians in the synthetic frequency dimension for photons[J]. Photonics Research, 2020, 8(9): B8

    [5] Hua-Jun Chen. Nonlinear optical effect and nonlinear optical mass sensor based on graphene optomechanical system[J]. Acta Physica Sinica, 2020, 69(13): 134203-1

    Baijun Li, Ran Huang, Xunwei Xu, Adam Miranowicz, Hui Jing. Nonreciprocal unconventional photon blockade in a spinning optomechanical system[J]. Photonics Research, 2019, 7(6): 630
    Download Citation