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We propose how to achieve quantum nonreciprocity via unconventional photon blockade (UPB) in a compound
device consisting of an optical harmonic resonator and a spinning optomechanical resonator. We show that, even
with very weak single-photon nonlinearity, nonreciprocal UPB can emerge in this system, i.e., strong photon
antibunching can emerge only by driving the device from one side but not from the other side. This nonreci-
procity results from the Fizeau drag, leading to different splitting of the resonance frequencies for the optical
counter-circulating modes. Such quantum nonreciprocal devices can be particularly useful in achieving back-
action-free quantum sensing or chiral photonic communications. © 2019 Chinese Laser Press

https://doi.org/10.1364/PRJ.7.000630

1. INTRODUCTION

Photon blockade (PB) [1–5], i.e., the generation of the first pho-
ton in a nonlinear cavity, diminishes to almost zero the probabil-
ity of generating another photon in the cavity; it plays a key role
in single-photon control for quantum technology applications
nowadays [6–8]. In experiments, PB has been demonstrated
in cavity-QED or circuit-QED systems [4,5,9–12]. It has also
been predicted in various nonlinear optical systems [13–15]
and optomechanical (OM) devices [16–20]. Conventional PB
occurs under the stringent condition of strong single-photon
nonlinearities, which is highly challenging in practice.

To overcome this obstacle, coupled-resonator systems,
with destructive interferences of different dissipative pathways
[21–24], have been proposed to achieve unconventional PB
(UPB) even for arbitrarily weak nonlinearities [23–37]. UPB
provides a powerful tool to generate optimally sub-Poissonian
light and also a way to reveal quantum correlations in weakly
nonlinear devices [33,34]. Recently, UPB was demonstrated
experimentally in coupled optical [36] or superconducting res-
onators [37].

It should be stressed that PB and UPB are very different
phenomena, and, thus, their nonreciprocal generalizations
are different as well. Indeed PB refers to a process where a single
photon is blocking the entry (or generation) of more photons in
a strongly nonlinear cavity. Thus, PB refers to state truncation,
also referred to as nonlinear quantum scissors [38,39]. PB
can be used as a source of single photons, since the PB light

is sub-Poissonian (or photon antibunched) in second and
higher orders, as characterized by the correlation functions
g �n��0� < 1 for n � 2, 3,…. By contrast to PB, UPB refers
to the light that is optimally sub-Poissonian in the second order,
g2�0� ≈ 0, and is generated in a weakly nonlinear system
allowing multi-path interference (e.g., two linearly coupled
cavities, when one of them is also weakly coupled to a two-level
atom). Thus, PB and UPB are induced by different effects: PB
due to a large system nonlinearity and UPB via multipath in-
terference even assuming extremely weak system nonlinearity.
Note that light generated via UPB can exhibit higher-order
super-Poissonian photon-number statistics, g �n��0� > 1 for
some n > 2. Thus, UPB is, in general, not a good source of
single photons. This short comparison of PB and UPB indicates
that the term UPB, as coined in Ref. [40] and now commonly
accepted, is fundamentally different from PB, concerning their
physical mechanisms and the properties of the light generated
in them.

Here, we propose achieving and controlling nonreciprocal
UPB with spinning devices. Nonreciprocal devices allow the
flow of light from one side but block it from the other.
Thus, such devices can be applied in noise-free quantum infor-
mation signal processing and quantum communication for can-
celing interfering signals [41]. Nonreciprocal optical devices
have been realized in OM devices [41–43], Kerr resonators
[44–46], thermo systems [47–49], devices with temporal
modulation [50,51], and non-Hermitian systems [52–54].
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In a very recent experiment [55], 99.6% optical isolation was
achieved in a spinning resonator based on the optical Sagnac
effect. By using the spinning resonators, optomechanically in-
duced transparency [56] and ultrasensitive nanoparticle sensing
[57] have also been studied. However, these studies have mainly
focused on the classical regimes, i.e., unidirectional control of
transmission rates instead of quantum noises. We also note that
in recent works, single-photon diodes [58–60], unidirectional
quantum amplifiers [61–65], and one-way quantum routers
[66] have been explored. In particular, nonreciprocal PB was
predicted in a Kerr resonator [67] or a quadratic OM system
[68], which, however, relies on the conventional condition of
strong single-photon nonlinearity. These quantum nonrecipro-
cal devices have potential applications for quantum control of
light chiral and topological quantum technologies [69].

We also note that coupled-cavity systems have been studied
extensively in experiments [37,70–72], providing a unique way
to achieve not only UPB, but also phonon laser [72–76], slow
light [77], and force sensing [70,71,78]. Here, we study non-
reciprocal UPB in a coupled system with an optical harmonic
cavity and a spinning OM resonator. We find that, by the spin-
ning of an OM resonator, UPB can emerge nonreciprocally
even with weak single-photon nonlinearity; that is, strongly
antibunched photons can emerge only when the device is
driven from one side but not the other side. Our work opens
up a new route to engineer quantum chiral UPB devices, which
can have practical applications in achieving, for example, pho-
tonic diodes or circulators, and nonreciprocal quantum com-
munications at the few-photon level.

2. MODEL AND SOLUTIONS

We consider a compound system consisting of an optical har-
monic resonator (with a resonance frequency ωL of the cavity
field and a decay rate of κL ) and a spinning anharmonic res-
onator (with a resonance frequency ωR of the cavity field and a
decay rate of κR ), as shown in Fig. 1. External light is coupled
into and out of the resonator through a tapered fiber of fre-
quency ωd and these two whispering-gallery-mode resonators
are evanescently coupled to each other with a coupling strength
of J [79]. Note that the required strong Kerr nonlinearity,
K ≈ 3κ (where κ is the cavity linewidth), in the previous pro-
posal [67] is challenging for the current experiments. Here, we
can use an experimentally feasible Kerr-nonlinear strength to
realize nonreciprocal PB, i.e., K ≈ 0.04κ [37], which is two
orders of magnitude smaller than that in the former work
[67]. Weak Kerr couplings can be achieved in cavity-atom sys-
tems [80], magnon devices [81], and OM systems [82], on
which we focus here. We consider a weak OM coupling
strength (g ≈ 0.63κ) in an auxiliary cavity that is well within
the current experimental abilities [83–85]. In a spinning reso-
nator, the refractive indices associated with the clockwise (�)
and anticlockwise (−) optical modes are given as n� �
n�1� nv�n−2 − 1�∕c�, where v � rΩ is the tangential velocity
with an angular velocity of Ω and radius r [55]. For light
propagating in the spinning resonator, the optical mode expe-
riences a Fizeau shift ΔF [86], that is, ωR → ωR � ΔF, with

ΔF � � nrΩωR

c

�
1 −

1

n2
−
λ

n
dn
dλ

�
� �ηΩ, (1)

Fig. 1. Nonreciprocal UPB in a coupled-resonator system. Spinning the OM (Kerr-type) resonator results in different Fizeau drag ΔF for the
counter-circulating whispering-gallery modes of the resonator. (a) By driving the system from the left-hand side, the direct excitation from state j1, 0i
to state j2, 0i (red dotted arrow) will be forbidden by destructive quantum interference with the other paths drawn by green arrows, leading to
photon antibunching. (b) Photon bunching occurs when the system is driven from the right side, due to lack of complete destructive quantum
interference between the indicated levels (drawn by crossed green dotted arrows). Here, δ � g2∕ωm is the energy shift induced by the OM
nonlinearity.
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where ωR � 2πc∕λ is the optical resonance frequency of the
nonspinning OM resonator, c (λ) is the speed (wavelength)
of light in vacuum, and n is the refractive index of the cavity.
The dispersion term dn∕dλ, characterizing the relativistic origin
of the Sagnac effect, is relatively small in typical materials
(∼1%) [55,86]. For convenience, we always assume counter-
clockwise rotation of the resonator. Hence, �ΔF denote light
propagating against (ΔF > 0) and along (ΔF < 0) the direction
of the spinning OM resonator, respectively.

In a rotating frame with respect toH 0 � ωd �a†LaL � a†RaR�,
the effective Hamiltonian of the system can be written as
(see Appendix A for more details)

H � ℏΔLa
†
LaL � ℏ�ΔR � ΔF�a†RaR � ℏωmb†b

� ℏJ�a†LaR � a†RaL� � ℏga†RaR�b† � b�
� iℏϵd �a†L − aL�, (2)

where aL (a†L) and aR (a†R) are the photon annihilation (crea-
tion) operators for the cavity modes of the optical cavity
(denoted with the subscript L) and the OM cavity (denoted
with the subscript R), respectively. b (b†) is the annihilation
(creation) operator for the mechanical mode of the OM
cavity. The frequency detuning between the cavity field in
the left (right) cavity and the driving field is denoted as
ΔK � ωK − ωd , where K � L,R. The parameter J denotes
the strength of the photon hopping interaction between the
two cavity modes, and g � ωR∕r�ℏ∕�2mωm��1∕2 describes
the radiation-pressure coupling between the optical and vibra-
tive modes in the OM resonator with frequency ωm and effec-
tive mass m. ϵd �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κLPin∕�ℏωd �

p
denotes the driving strength

that is coupled into the compound system through the optical
fiber waveguide with a cavity loss rate of κL and driving
power Pin.

The Heisenberg equations of motion of the system are then
written as

d

dt
q � ωmp,

d

dt
p � −ωmq − gba

†
RaR −

γm
2
p� ξ,

d

dt
aL � −

�
κL
2
� iΔL

�
aL − iJaR � ϵd �

ffiffiffiffiffi
κL

p
aL,in,

d

dt
aR � −

�
κR
2
� iΔ 0

R

�
aR − iJaL − igbqaR �

ffiffiffiffiffi
κL

p
aR,in, (3)

where p and q are dimensionless canonical position and mo-
mentum, with p � i�b† − b�∕ ffiffiffi

2
p

and q � �b� b†�∕ ffiffiffi
2

p
, re-

spectively. Δ 0
R � ΔR � ΔF and gb �

ffiffiffi
2

p
g , and κL � ωL∕QL

(κR � ωR∕QR) is the dissipation rate and QL (QR) is the qual-
ity factor of the left (right) cavity. γm � ωm∕QM is the damp-
ing rate with QM the quality factor of the mechanical mode.
Moreover, ξ is the zero-mean Brownian stochastic operator,
hξ�t�i � 0, resulting from the coupling of the mechanical res-
onator with the corresponding thermal environment and sat-
isfying the correlation function [87]

hξ�t�ξ�t 0�i � 1

2π

Z
dωe−iω�t−t 0�Γm�ω�, (4)

where

Γm�ω� �
ωγm
2ωm

�
1� coth

�
ℏω
2kBT

��
, (5)

T is effective temperature of the environment of the mechani-
cal resonator, and kB is the Boltzmann constant. The
annihilation operators aL,in and aR,in are, respectively, the input
vacuum noise operators of the optical cavity and the OM cavity
with zero mean value, i.e., haL,ini � haR,ini � 0, and they
comply with the time-domain correlation functions [88,89]

ha†K ,in�t�aK ,in�t 0�i � 0,

haK ,in�t�a†K ,in�t 0�i � δ�t − t 0�, (6)

for K � L,R. Because the whole system interacts with a low-
temperature environment (here we consider 0.1 mK), we ne-
glect the mean thermal photon numbers at optical frequencies
in the two cavities. In order to linearize the dynamics around
the steady state of the system, we expend the operators as the
sum of its steady-state mean values and a small fluctuation
with zero mean value around it; that is, aL � α� δaL,
aR � β� δaR , q � qs � δq, and p � ps � δp. By neglecting
higher-order terms, δa†LδaL, the linearized equations of the
fluctuation terms can be written as

d

dt
δq � ωmδp,

d

dt
δp � −ωmδq − gb�β	δaR � βδa†R� −

γm
2
δp� ξ,

d

dt
δaL � −

�
κL
2
� iΔL

�
δaL − iJδaR �

ffiffiffiffiffi
κL

p
aL,in,

d

dt
δaR � −

�
κR
2
� iΔ 0

R

�
δaR − iJδaL − igbqsδaR

− igbβδq �
ffiffiffiffiffi
κR

p
aR,in: (7)

These equations can be solved in the frequency domain (see
Appendix B). In particular, we find

δaL�ω� � E�ω�aL,in�ω� � F �ω�a†L,in�ω� � G�ω�aR,in�ω�
�H �ω�a†R,in�ω� � Q�ω�ξ�ω�, (8)

where

E�ω� � ffiffiffiffiffi
κL

p A1�ω�
A5�ω�

,

F�ω� � −
ffiffiffiffiffi
κL

p A2�ω�
A5�ω�

,

G�ω� � ffiffiffiffiffi
κR

p A3�ω�
A5�ω�

,

H �ω� � −
ffiffiffiffiffi
κR

p A4�ω�
A5�ω�

,

Q�ω� � −i
gbχ�ω�
ωmA5�ω�

�βA3�ω� � β	A4�ω��, (9)

and
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A1�ω� �
��

κR
2
� iω

�
2

� Δ 0 02
R

�
V −

1�ω�

− g4bjβj4
�
χ�ω�
ωm

�
2

V −
1�ω� � J2V �

2 ,

A2�ω� � −iJ2g2bβ
2 χ�ω�
ωm

,

A3�ω� � −iJV −
1�ω�V −

2 − iJ
3,

A4�ω� � −Jg2bβ
2 χ�ω�
ωm

V −
1�ω�,

A5�ω� � V �
1 A1�ω� � iJA3�ω�, (10)

where we introduced the auxiliary functions

Δ 0 0
R � Δ 0

R � gbqs − g
2
bjβj2χ�ω�,

χ�ω� � ω2
m∕

�
ω2
m − ω2 � iωγm

2

�
,

V �
1 �ω� �

κL
2
� i�ΔL − ω�,

V �
2 �ω� �

κR
2
� i�ΔR − ω�: (11)

3. NONRECIPROCAL OPTICAL CORRELATIONS

Now, we focus on the statistical properties of photons in
an optical cavity, which are described quantitatively via the
normalized zero-time-delay second-order correlation function
g �2�L �0� � ha†2L a2Li∕ha†LaLi2 [29,89]. By taking the semi-
classical approximation, i.e., aL � α� δaL, the correlation
function g�2�L �0� can be given as [29]

g�2�L �0� � jαj4 � 4jαj2R1 � 2Re�α	2R2� �R3

�jαj2 �R1�2
, (12)

where R1 � hδa†L�t�δaL�t�i, R2 � h�δaL�t��2i, and R3 �
hδa†L�t�δa†L�t�δaL�t�δaL�t�i � 2R1 � jR2j2.

From Eq. (8), the correlation between δaL�t� and δa†L�t�
can be calculated as

hδa�L �t�δaL�t�i �
1

2π

Z �∞

−∞
X a�L aL

dω, (13)

where

δa�L �t� � δa†L�t�, δa−L�t� � δaL�t�, and

X a†LaL
� jQ�−ω�j2Γm�−ω� � jF�−ω�j2 � jH �−ω�j2,

X aLaL � Q�ω�Q�−ω�Γm�−ω� � E�ω�F�−ω�
� G�ω�H �−ω�: (14)

To obtain more accurate results, we introduce the density operator
ρ�t� and numerically calculate the normalized zero-time-delay sec-
ond-order correlation by the Lindblad master equation [90]:

_ρ � 1

iℏ
�H, ρ� � κL

2
L�aL��ρ� �

κR
2
L�aR ��ρ�

� γm
2
�n̄m � 1�L�b��ρ� � γm

2
n̄mL�b†��ρ�, (15)

where L�o��ρ� � 2oρo† − o†oρ − ρo†o are the Lindblad super-
operators [89], for o � aL, aR , b, and b†, and n̄m �
1∕�exp�ℏωm∕kBT � − 1� is the mean thermal phonon number
of the mechanical mode at temperature T .

The second-order correlation function gL�2��0� is shown
in Fig. 2 as a function of optical detuning Δ∕κ and angular veloc-
ity Ω. We assume ΔL � ΔR − δ � Δ and κL � κR � κ and use
experimentally feasible parameters [53,83,91–95], that is, λ �
1550 nm,QL�3×107, r�0.3mm, n�1.44,m�5×10−11 kg,
and Pin � 2 × 10−17 W. QL is typically 106–1012 [92,94,95], g
is typically 103–106 Hz [83,91,92] in optical microresonators,
and g �2�L �0� ∼ 0.37 [36,37] was achieved experimentally. J can
be adjusted by changing the distance of the double resonators
[72]. In a recent experiment, autocorrelation measurements rang-
ing from g �2��0� � 6 × 10−3 to 2 were achieved with an average
fidelity of 0.998 in a photon-number-resolving detector [96].
Moreover, we set Ω � 12 kHz, which is experimentally feasible.
The resonator with a radius of r � 1.1 mm can spin at an angular
velocity of Ω � 6.6 kHz [55]. Using a levitated OM system
[97,98], Ω can be increased even up to GHz values.

Our analytical results agree well with the numerical one. In the
case of a nonspinning resonator, as shown in Fig. 2(a), g �2�L �0� is
reciprocal regardless of the direction of the driving light, and al-
ways has a dip at Δ∕κ ≈ −0.29 and a peak at Δ∕κ ≈ 0.166, cor-
responding to strong photon antibunching and photon bunching,
respectively [29]. The physical origin of the strong photon anti-
bunching is the destructive interference between the direct and
indirect paths of two-photon excitations, i.e.,
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Fig. 2. Correlation function g�2�L �0� versus optical detuning Δ∕κ (in units of cavity loss rate κL � κR � κ) with (a) Ω � 0 and (b) Ω � 12 kHz,
which is found numerically (solid curves) and analytically (dotted curve). The PB can be generated (red curves) or suppressed (blue curves)
for different driving directions, which can be seen more clearly in panel (c). The other parameters are g∕κ � 0.63, ωm∕κ � 10 [91],
J∕κ � 3, T � 0.1 mK (case 1), and g∕κ � 0.1 [28], ωm∕κ � 30 [92], J∕κ � 20, T � 1 mK (case 2).
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j1, 0i !
ffiffi
2

p
ϵd j2, 0i, j1, 0i!J j0, 1i!ϵd j1, 1i!

ffiffi
2

p
Jj2, 0i:

In contrast, for a spinning device, g �2�L �0� exhibits giant nonreci-
procity, which can be seen in Fig. 2(b). The PB can be generated,
i.e., g �2�L �0� ∼ 0.06, for ΔF < 0, whereas it is significantly sup-
pressed, i.e., g �2�L �0� ∼ 4.72, for ΔF > 0; this can be seen more
clearly in Fig. 2(c). Nonreciprocal UPB induced by the Fizeau
light-dragging effect, with difference in g�2�L �0� up to two orders
of magnitude for opposite directions, can be achieved even with
weak nonlinearity and, to our knowledge, has not been studied
previously. Furthermore, in Fig. 2(b), we use two sets of param-
eters for solid (case 1) and dashed curves (case 2), respectively. It
can be seen that nonreciprocity still exists in a parameter range
closer to that in the experiment.

Since the anharmonicity of the system is very small, destructive
quantum interference (rather than anharmonicity) is responsible
for observing strong photon antibunching (referred to as UPB)
and photon bunching (referred to as photon-induced tunneling)
in the spinning devices, as shown in Fig. 1 and confirmed by our
analytical calculations. Note that the role of complete (incomplete)
destructive quantum interference is the same in both spinning and
non-spinning UPB systems, and, thus, we refer to Ref. [24] where
this interference-based mechanism was first explained in detail.
Spinning the OM resonator results in different Fizeau drag ΔF

for the counter-circulating whispering-gallery modes of the reso-
nator. By driving the system from the left-hand side, direct exci-
tation from state j1, 0i to state j2, 0i will be forbidden by
destructive quantum interference with the indirect paths of
two-photon excitations, leading to photon antibunching. In con-
trast, photon bunching occurs when the system is driven from the
right side, due to lack of complete destructive quantum interfer-
ence between the indicated levels [99]. Increasing the angular
velocity results in an opposing frequency shift of ηΩ for light com-
ing from opposite directions. g �2�L �0� also shifts linearly with Ω,
but with different directions for ΔF < 0 and ΔF > 0; that is, we
observe either a blue shift [see Fig. 3(a)] or a red shift [see
Fig. 3(b)] with ΔF > 0 or ΔF < 0, respectively. A highly tunable
nonreciprocal UPB device is thus achievable, by flexible tuning of
Ω and Δ∕κ. In addition, since g �2�L �0� is sensitive to Ω, this may
also indicate a way for accurate measurements of velocity.

4. OPTIMAL PARAMETERS FOR STRONG
ANTIBUNCHING

As discussed above, UPB can be generated nonreciprocally. In
this section, we analytically derive the optimal conditions for
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Fig. 3. Correlation function g �2�L �0� versus optical detuning Δ∕κ (in units of cavity loss rate κL � κR � κ) at various angular velocities Ω upon
driving the device from (a) the right-hand side or (b) the left-hand side. The dashed curves show our approximate analytical results, given in Eq. (12),
whereas the solid curves are our numerical solutions. The other parameters are the same as those in Fig. 2 (case 1).
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g∕κ for optical detuning of Δ∕κ � −0.05. The angular velocity is
Ω � 12 kHz and the white dashed curve corresponds to g �2�L �0� � 1.
The other parameters are the same as those in Fig. 3.
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strong antibunching. Here we apply the method described in
Ref. [24], which is based on the evolution of a complex non-
Hermitian Hamiltonian, as given in Appendix C. Thus, our
solution corresponds to only a semi-classical approximation

of the solution of the quantum master equation, given in
Eq. (15), where the terms corresponding to quantum jumps
are ignored.

Since the phonon states can be decoupled from the photon
states by using the unitary operator U � exp�−g�b† − b�∕ωm�,
the states of the system can be expressed as jψi � jφijϕmi,
where jφi and jϕmi are the photon states and phonon states,
respectively. Under the weak-driving condition, we make the
ansatz [24]

jφi � C00j0, 0i � C10j1, 0i � C01j0, 1i � C20j2, 0i
� C11j1, 1i � C02j0, 2i, (16)

and consider that Cmn ≪ Cm 0n 0 ≪ C00 for m� n � 2,
m 0 � n 0 � 1, and the condition of C20 � 0; the optimal con-
ditions are given by fixing J and κ (see Appendix C):

Δopt ≈
−a3 � sgn�E� ffiffiffiffiffi

λ1
p

−
ffiffiffiffiffi
λ2

p

4a4
,

gopt �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
ωm�Δopt�4Δ2

opt � 5κ2� � ΔFλ3�
2�2J2 − κ2� � 2ΔFλ4

s
, (17)

the signal function sgn�E�, a3 � −96ΔFκ, and λ1,2, which are
defined in Appendix C, are related to the Fizeau drag ΔF.
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Fig. 5. Correlation function g�2�L �0� versus optical detuning Δ∕κ
(in units of cavity loss rate κL � κR � κ) with varied mean thermal
phonon numbers nth for various angular velocitiesΩ, and the resulting
Fizeau shifts ΔF. The other parameters are the same as those in Fig. 4.
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Fig. 6. (a) Correlation function g�2�L �0� versus effective temperature T of the environment of the mechanical resonator for three values of Fizeau
shift ΔF (ΔF > 0, ΔF � 0, and ΔF < 0) for optimal values of Δopt and gopt. The other parameters are set the same as in case 2 in Fig. 2. Also shown
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Physically, this means that the position of the minimum of
g �2�L �0� is determined by the detuning between the two cavity
fields. Thus,ΔF can lead to a shift of the minimum of g �2�L �0� to
achieve nonreciprocity.

In order to visualize UPB more clearly, we show the contour
plots of g�2�L �0� in logarithmic scale [i.e., log10g

�2�
L �0�] as a func-

tion of g∕κ and Δ∕κ in Fig. 4(a). By fixing Δ∕κ � −0.05, we
obtain the function of g �2�L �0� in logarithmic scale versus the
coupling strengths J∕κ and g∕κ of the resonators, as shown
in Fig. 4(b). These plots show that strong photon antibunching
occurs exactly at the values predicted by our analytical calcu-
lations in Eq. (17). Moreover, by computing g �2�L �0� as a func-
tion of Δ∕κ and Ω with different mean thermal phonon
numbers nth, as shown in Fig. 5, we confirm that rotation-
induced nonreciprocity can still exist by considering thermal
phonon noises. We note that thermal phonons greatly affect
the correlation g �2�L �0� of photons and tend to destroy PB.
Thus, to show this effect, in Fig. 6(a) we plot the correlation
g �2�L �0� as a function of temperature T for various Fizeau shifts.
We see that nonreciprocal UPB can be observed below the criti-
cal temperature T 0 ≈ 4 mK (5 mK) for the spinning frequency
of Ω � 12 kHz (Ω � 50 kHz) [see Fig. 6(b)]. By further
increasing the optical dissipation of the OM cavity, as shown
in Fig. 6(d), the critical temperature T 0 can be made to reach a
value of 10 mK.

Finally, we note that a state (generated via UPB or another
effect) with vanishing (or almost vanishing) second-order pho-
ton-number correlations, g �2��0� ≈ 0, is not necessarily a good
single-photon source, i.e., the state might not be a (partially
incoherent) superposition of only the vacuum and single-
photon states. A good single-photon source is characterized
not only by g �2��0� ≈ 0, but also by vanishing higher-order
photon-number correlation functions, g�n��0� ≈ 0 for n > 2.
In UPB, g �n��0� for n > 2 can be greater than g�2��0� ≈ 0,
or even greater than 1 [100]. Indeed, a standard analytical
method for analyzing UPB, as proposed by Bamba et al.
[24] and applied here, is based on expanding the wave func-
tion jφi of a two-resonator system in the power series jφi �P

Cn,mjn,mi up to the terms Cn,2−n (n � 0, 1, 2) only, as
given in Eq. (16). To obtain the optimal system parameters,
which minimize g �2��0� in UPB, this method requires setting
C2,0 � 0 as set in Appendix C. Actually, the same expansion
of jφi and the same ansatz are made in Ref. [24]. These
assumptions imply that higher-order correlation functions
g �n��0� with n � 3, 4,… vanish too. However, the truncation
of the above expansion at the terms Cn,2−n is often not
justified for a system exhibiting UPB. Indeed, we find param-
eters for our system for which g �2��0� ≈ 0 and, simultane-
ously, g�3��0� > 1. We have confirmed this by precise
numerical calculation of the steady states of our system based
on the non-Hermitian Hamiltonian, given in Eq. (C1), in a
Hilbert space larger than 4 × 4.

5. CONCLUSIONS

In summary, we studied nonreciprocal UPB in a system con-
sisting of a purely optical resonator and a spinning OM

resonator. Due to interference between two-photon excitation
paths and the Sagnac effect, UPB can be generated nonrecipro-
cally in our system; that is, UPB can occur when the system is
driven from one direction but not from the other, even under
weak OM interactions. The optimal conditions for one-way
UPB were presented analytically. Moreover, we found that this
quantum nonreciprocity can still exist by considering thermal
phonon noises.

Concerning a possible experimental implementation of non-
reciprocal UPB, it is worth noting that UPB for non-spinning
devices has already been demonstrated experimentally in two
recent works [36,37]. A number of experiments (including a
very recent work [55]) have shown nonreciprocal quantum
effects in spinning devices. So the main experimental task for
achieving nonreciprocal UPB in a spinning device would be to
combine the experimental setups of, e.g., Refs. [36,37,55] into
a single spinning UPB setup.

Our proposal provides a feasible method to control the
behavior of one-way photons, with potential applications in
achieving, e.g., photonic diodes or circulators, quantum chiral
communications, and nonreciprocal light engineering in the
deep quantum regime.

APPENDIX A: DERIVATION OF EFFECTIVE
HAMILTONIAN

The coupled system can be described by the Hamiltonian

H � H 0 �H in �H dr,

H 0 � ℏωLa
†
LaL � ℏ�ωR � ΔF�a†RaR � ℏωmb†b,

H in � ℏJ�a†LaR � a†RaL� � ℏga†RaR�b† � b�,
H dr � iℏϵd �a†Le−iωd t − aLeiωd t�, (A1)

where aL (a†L) and aR (a†R) are the photon annihilation (crea-
tion) operators for the cavity modes of the optical cavity
(denoted with the subscript L) and the OM cavity (denoted
with the subscript R), respectively. b (b†) is the annihilation
(creation) operator for the mechanical mode of the OM cavity.
The frequencies of the cavity fields are denoted with ωL and
ωR . J is the coupling strength between the two resonators,
and g � ωR∕r�ℏ∕�2mωm��1∕2 is the OM coupling strength
between the optical mode and the mechanical mode in the
OM cavity. ϵd �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κLPin∕�ℏωd �

p
denotes the driving strength

that is coupled into the compound system through the optical
fiber waveguide.

Using the unitary operator U � exp�−g�b† − b�∕ωm� for the
Hamiltonian (A1), we obtain a Kerr-type Hamiltonian [82]

H eff � U †HU

� ℏωLa
†
LaL � ℏ�ωR � ΔF�a†RaR − ℏδ�a†RaR�2

� ℏJ �a†LaRe−δ�b
†−b� � aLa

†
Re

δ�b†−b��
� iℏϵd �a†Le−iωd t − aLeiωd t�, (A2)

where δ � g2∕ωm. Under the conditions g∕ωm ≪ 1 and
J < ωm∕2, the Hamiltonian (A2) can be read as
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H 0
eff � ℏωLa

†
LaL � ℏ�ωR � ΔF�a†RaR − ℏδ�a†RaR�2

� ℏJ�a†LaR � aLa
†
R� � iℏϵd �a†Le−iωd t − aLeiωd t�:

(A3)

APPENDIX B: FOURIER ANALYSIS OF
FLUCTUATION TERMS

According to the Heisenberg equations of motion of
Hamiltonian (2), and using the semi-classical approximation
method, i.e., aL � α� δaL, aR � β� δaR , q � qs � δq,
and p � ps � δp, the steady-state values of the system satisfy
the equations

0 �
�
κL
2
� iΔL

�
α� iJβ − ϵd ,

0 �
�
κR
2
� i�Δ 0

R � gbqs�
�
β − iJα,

0 � ωmqs − gbjβj2: (B1)

Then we obtain

b3q3s � b2q2s � b1qs � b0 � 0, (B2)

where

b0 � gbJ
2ϵ2d ,

b1 � ωm

�
κLκR
4

� J2
�

2

� ωm

�
κLΔ 0

R

2
� κRΔL

2

�
2

− ωmΔLΔ 0
R

�
κLκR
2

� 2J2 − ΔLΔ 0
R

�
,

b2 � 2ωmgb

�
κ2LΔ 0

R

4
� ΔL�ΔLΔ 0

R − J
2�
�
,

b3 � ωmg2b

�
κ2L
4
� Δ2

L

�
: (B3)

The fluctuation terms of the system can be written as

d

dt
δq � ωmδp,

d

dt
δp � −ωmδq − gb�β	δaR � βδa†R� −

γm
2
δp� ξ,

d

dt
δaL � −

�
κL
2
� iΔL

�
δaL − iJδaR �

ffiffiffiffiffi
κL

p
aL,in,

d

dt
δaR � −

�
κR
2
� iΔ 0

R

�
δaR − iJδaL − igbqsδaR

− igbβδq �
ffiffiffiffiffi
κR

p
aR,in, (B4)

where we have neglected higher-order terms, δa†LδaL. Here, the
steady-state mean value qs is numerically solved from Eqs. (B2)
and (B3).

By introducing the Fourier transform to the fluctuation
equations, we find

iωδaL�ω� � −

�
κL
2
� iΔL

�
δaL�ω� − iJδaR�ω�

� ffiffiffiffiffi
κL

p
aL,in�ω�,

iωδaR�ω� � −

�
κR
2
� iΔ 0 0 0

R

�
δaL�ω� − iJδaR�ω�

− igbβδq�ω� �
ffiffiffiffiffi
κR

p
aR,in�ω�,

iωδq�ω� � ωmδp�ω�,
iωδp�ω� � −ωmδq�ω� − gb�β	δaR�ω� � βδa†R�ω��

−
γm
2
δp�ω� � ξ�ω�, (B5)

where Δ 0 0 0
R � Δ 0

R � gbqs; then we obtain

δq�ω� � −gbβ
	χ�ω�δaR�ω� − gbβχ�ω�δa†R�ω� � χ�ω�ξ�ω�,

(B6)

where

χ�ω� � ωm

ω2
m − ω2 � iωγm∕2

: (B7)

Substituting Eq. (B6) into Eq. (B5), we have

M�ω�δaR�ω� � ig2bβ
2χ�ω�δa†R�ω� − igbβχ�ω�ξ�ω�

− iJδL�ω� �
ffiffiffiffiffi
κR

p
aR,in�ω�, (B8)

where

M�ω� � κR
2
� iω� iΔ 0 0 0

R − ijβj2g2bχ�ω�: (B9)

According to Eq. (B5), we obtain

iωδa†L�ω� � −

�
κL
2
− iΔL

�
δa†L�ω� � iJδa†R�ω�

� ffiffiffiffiffi
κL

p
a†L,in�ω�,

iωδa†R�ω� � −

�
κR
2
− iΔ 0 0 0

R

�
δa†R�ω� � iJδa†R�ω�

� igbβδq
†�ω� � ffiffiffiffiffi

κR
p

a†R,in�ω�,
iωδq†�ω� � ωmδp†�ω�,
iωδp†�ω� � −ωmδq†�ω� − gb�βδa†R�ω� � β	δaR�ω��

−
γm
2
δp† � ξ†�ω�, (B10)

then we have

N �ω�δaR�ω� � −ig2bβ
	2χ�ω�δa†R�ω� � igbβ

	χ�ω�ξ†�ω�
� iJδa†L�ω� �

ffiffiffiffiffi
κR

p
a†R,in�ω�, (B11)

where

N �ω� � κR
2
� iω − iΔ 0 0 0

R � ijβj2g2bχ�ω�: (B12)

From Eq. (B10), we have

V �ω�δa†L�ω� � iJδa†R�ω� �
ffiffiffiffiffi
κL

p
a†L,in�ω�, (B13)

where V �ω� � κL∕2� iω − iΔL. Substituting Eq. (B13) into
Eq. (B11), we find
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T �ω�δa†R�ω��−iχ�ω�g2bβ	2V �ω�δaR�ω�
� iχ�ω�gbβ	V �ω�ξ†�ω�
� iJ

ffiffiffiffiffi
κL

p
a†L,in�ω��

ffiffiffiffiffi
κR

p
V �ω�a†R,in�ω�, (B14)

where T �ω� � N �ω�V �ω� � J2. Substituting Eq. (B14) into
Eq. (B8), we obtain

FR�ω�δaR�ω� � −χ2�ω�g3bβjβj2 V �ω�ξ†�ω�
− igbβχ�ω�T �ω�ξ�ω�
− Jg2bβ

2χ�ω� ffiffiffiffiffi
κL

p
a†L,in

� ig2bβ
2χ�ω� ffiffiffiffiffi

κR
p

V �ω�a†R,in�ω�
− iJT �ω�aL,in −

ffiffiffiffiffi
κR

p
T �ω�aR,in, (B15)

where the auxiliary function is FR�ω� � M �ω�T �ω�−
χ2�ω�V �ω�g4bjβj4. Substituting Eq. (B15) into Eq. (B5), we
have

FL�ω�δaL�ω� � iJχ2�ω�g3bβjβj2 V �ω�ξ†�ω�
− gbβχ�ω�JT �ω�ξ�ω�
� iJ2g2bβ

2χ�ω� ffiffiffiffiffi
κL

p
a†L,in

� Jg2bβ
2χ�ω� ffiffiffiffiffi

κR
p

V �ω�a†R,in�ω�
− iJ

ffiffiffiffiffi
κR

p
T �ω�aR,in

−
ffiffiffiffiffi
κL

p �M�ω�T �ω� − U �ω��aL,in, (B16)

where

FL�ω� � �M�ω�T �ω� − U �ω��V 1�ω� � J2T �ω�,

U �ω� � −χ2�ω�g4bjβj4
�
iω� κL

2
− iΔL

�
,

V 1�ω� �
κL
2
� iω� iΔL: (B17)

Then we find

δaL�ω� � E�ω�aL,in�ω� � F �ω�a†L,in�ω� � G�ω�aR,in�ω�
�H �ω�a†R,in�ω� � Q�ω�ξ�ω�: (B18)

According to similar calculations, we find

δa†L�ω� � E	�−ω�a†L,in�ω� � F	�−ω�aL,in�ω�
� G	�−ω�a†R,in�ω� �H	�−ω�aR,in�ω�
� Q	�−ω�ξ�ω�: (B19)

Using the Fourier transform, we obtain

haL,in�ω�a†L,in�ω 0�i � 1ffiffiffiffiffi
2π

p
Z

∞

−∞
haL,in�t�e−iωtdt

×
1ffiffiffiffiffi
2π

p
Z

∞

−∞
a†L,in�t 0�ie−iω

0t 0dt 0

� δ�ω� ω 0�, (B20)

and

haR,in�ω�a†R,in�ω 0�i � δ�ω� ω 0�: (B21)

APPENDIX C: DERIVATION OF OPTIMAL
PARAMETERS

According to the quantum-trajectory method [101], the non-
Hermitian Hamiltonian of the system containing the optical
decay and mechanical damping terms is given by [101]

H 0 � ℏ
�
ΔL − i

κL
2

�
a†LaL � ℏ

�
Δ 0

R − i
κR
2

�
a†RaR

� ℏ
�
ωm − i

γm
2

�
b†b� ℏJ�a†LaR � a†RaL�

− ℏδ�a†RaR�2 � iℏϵd �a†L − aL�, (C1)

where Δ 0
R � ΔR � ΔF.

Under the weak-driving conditions, we can make the
ansatz [24]

jφi � C00j0, 0i � C10j1, 0i � C01j0, 1i � C20j2, 0i
� C11j1, 1i � C02j0, 2i: (C2)

Then we substitute the Hamiltonian [Eq. (C1)] and the general
state [Eq. (C2)] into the Schrödinger equation

iℏ
djφi
dt

� H 0jφi, (C3)

and then we have

H 0C00j0, 0i � iℏϵdC00j1, 0i,
H 0C10j1, 0i � ℏδLC10j1, 0i � ℏJC10j0, 1i

� iℏϵdC10

� ffiffiffi
2

p
j2, 0i − j0, 0i

�
,

H 0C01j0, 1i � ℏδRC01j0, 1i � ℏJC01j1, 0i
� iℏϵdC01j1, 1i,

H 0C20j2, 0i � 2ℏδLC20j2, 0i �
ffiffiffi
2

p
ℏJC20j1, 1i

� iℏϵdC20

� ffiffiffi
3

p
j3, 0i −

ffiffiffi
2

p
j1, 0i

�
,

H 0C11j1, 1i � ℏδLC11j1, 1i � ℏδRC11j1, 1i
�

ffiffiffi
2

p
ℏJC11�j2, 0i � j0, 2i�

� iℏϵdC11

� ffiffiffi
2

p
j2, 1i − j0, 1i

�
,

H 0C02j0, 2i � 2ℏδRC02j0, 2i − 2δC02j0, 2i
�

ffiffiffi
2

p
ℏJC02�j1, 1i � iℏϵdC02j1, 2i, (C4)

where the auxiliary functions are δL � ΔL − iκL∕2 and
δR � Δ 0

R − iκR∕2, and we have ignored the effects of the
mechanical model because the phonon states are decoupled
from the photon states [see Eq. (C1)]. By comparing the
coefficients, we have

638 Vol. 7, No. 6 / June 2019 / Photonics Research Research Article



∂C00

∂t
� ϵdC10,

i
∂C10

∂t
� δLC10 � JC01 −

ffiffiffi
2

p
iϵdC20,

i
∂C01

∂t
� �δR − δ�C01 � JC10 − iϵdC11,

i
∂C11

∂t
� δLC11 � �δR − δ�C11

�
ffiffiffi
2

p
J�C02 � C20� � iϵdC01,

i
∂C02

∂t
� 2�δR − δ�C02 �

ffiffiffi
2

p
JC11 − 2δC02,

i
∂C20

∂t
� 2�δR − δ�C20 �

ffiffiffi
2

p
JC11 �

ffiffiffi
2

p
iϵdC10: (C5)

Then the steady-state coefficients of the one- and two-particle
states are given as

0 � δLC10 � JC01 � iϵdC00,

0 � δRC01 � JC10, (C6)

and

0 � 2δLC20 �
ffiffiffi
2

p
JC11 � i

ffiffiffi
2

p
ϵdC10,

0 � �δL � δR�C11 �
ffiffiffi
2

p
JC20 �

ffiffiffi
2

p
JC02 � iϵdC01,

0 � 2�δR − δ�C02 �
ffiffiffi
2

p
JC11, (C7)

where we have introduced the dissipative terms (proportional
to κL and κR) and neglected the higher-order terms, as justified
under the weak-driving conditions.

When we consider ΔL � ΔR − δ � Δ, δ � g2∕ωm,
κL � κR � κ, and the condition of C20 � 0, we have

0 � κ2�2δ − 6Δ − 5Δ2
F� � 4Δ2�2Δ − 2δ − 5δΔ2

F�
� 4ΔF�4ΔΔF − 3δΔ − δΔF � Δ2

F� − 4J2δ,
0 � 8δΔ − 12Δ2 � κ2 � ΔF�6δ − 20Δ − 8ΔF�: (C8)

By eliminating δ, we obtain

a4Δ4 � a3Δ3 � a2Δ2 � a1Δ� a0 � 0, (C9)

where

a0 � κ�4J2 − 10Δ2
F��κ2 − 8Δ2

F� − 2κ�κ4 − 44Δ4
F�,

a1 � −8ΔF�6Δ2
Fκ� 10J2κ � 3�,

a2 � −8κ�2κ2 � 6J2 � 13Δ2
F�,

a3 � −96ΔFκ,

a4 � −32κ, (C10)

then we find the optimal conditions

Δopt ≈
−a3 � sgn�E� ffiffiffiffiffi

λ1
p

−
ffiffiffiffiffi
λ2

p

4a4
,

gopt �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
ωm�Δopt�4Δ2

opt � 5κ2� � ΔFλ3�
2�2J2 − κ2� � 2ΔFλ4

s
, (C11)

where

λ1 �
D� ffiffiffiffiffi

z13
p � ffiffiffiffiffi

z23
p

3
,

λ2 �
2D −

ffiffiffiffiffi
z13

p
−

ffiffiffiffiffi
z23

p � ffiffiffiffiffiz33
p

3
,

λ3 � 20Δ2
opt − 8ΔoptΔF − 4Δ2

F � 5κ2,

λ4 � 10Δ2
opt � 3Δopt � 2ΔF, (C12)

and

sgn�E� �
	

1 �E > 0�,
−1 �E < 0�,

z1,2 � AD� 3
−B �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − 4AC

p

2
,

z3 � D2 − D

 ffiffiffiffiffi

z13
p � ffiffiffiffiffi

z23
p �� 
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