• Photonics Research
  • Vol. 7, Issue 6, 630 (2019)
Baijun Li1, Ran Huang1, Xunwei Xu2, Adam Miranowicz3、4、5, and Hui Jing1、6
Author Affiliations
  • 1Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China
  • 2Department of Applied Physics, East China Jiaotong University, Nanchang 330013, China
  • 3Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
  • 4Faculty of Physics, Adam Mickiewicz University, 61-614 Poznan, Poland
  • 5e-mail: miran@amu.edu.pl
  • 6e-mail: jinghui73@gmail.com
  • show less
    DOI: 10.1364/PRJ.7.000630 Cite this Article Set citation alerts
    Baijun Li, Ran Huang, Xunwei Xu, Adam Miranowicz, Hui Jing. Nonreciprocal unconventional photon blockade in a spinning optomechanical system[J]. Photonics Research, 2019, 7(6): 630 Copy Citation Text show less

    Abstract

    We propose how to achieve quantum nonreciprocity via unconventional photon blockade (UPB) in a compound device consisting of an optical harmonic resonator and a spinning optomechanical resonator. We show that, even with very weak single-photon nonlinearity, nonreciprocal UPB can emerge in this system, i.e., strong photon antibunching can emerge only by driving the device from one side but not from the other side. This nonreciprocity results from the Fizeau drag, leading to different splitting of the resonance frequencies for the optical counter-circulating modes. Such quantum nonreciprocal devices can be particularly useful in achieving back-action-free quantum sensing or chiral photonic communications.
    ΔF=±nrΩωRc(11n2λndndλ)=±ηΩ,(1)

    View in Article

    H=ΔLaLaL+(ΔR+ΔF)aRaR+ωmbb+J(aLaR+aRaL)+gaRaR(b+b)+iϵd(aLaL),(2)

    View in Article

    ddtq=ωmp,ddtp=ωmqgbaRaRγm2p+ξ,ddtaL=(κL2+iΔL)aLiJaR+ϵd+κLaL,in,ddtaR=(κR2+iΔR)aRiJaLigbqaR+κLaR,in,(3)

    View in Article

    ξ(t)ξ(t)=12πdωeiω(tt)Γm(ω),(4)

    View in Article

    Γm(ω)=ωγm2ωm[1+coth(ω2kBT)],(5)

    View in Article

    aK,in(t)aK,in(t)=0,aK,in(t)aK,in(t)=δ(tt),(6)

    View in Article

    ddtδq=ωmδp,ddtδp=ωmδqgb(β*δaR+βδaR)γm2δp+ξ,ddtδaL=(κL2+iΔL)δaLiJδaR+κLaL,in,ddtδaR=(κR2+iΔR)δaRiJδaLigbqsδaRigbβδq+κRaR,in.(7)

    View in Article

    δaL(ω)=E(ω)aL,in(ω)+F(ω)aL,in(ω)+G(ω)aR,in(ω)+H(ω)aR,in(ω)+Q(ω)ξ(ω),(8)

    View in Article

    E(ω)=κLA1(ω)A5(ω),F(ω)=κLA2(ω)A5(ω),G(ω)=κRA3(ω)A5(ω),H(ω)=κRA4(ω)A5(ω),Q(ω)=igbχ(ω)ωmA5(ω)[βA3(ω)+β*A4(ω)],(9)

    View in Article

    A1(ω)=[(κR2+iω)2+ΔR2]V1(ω)gb4|β|4[χ(ω)ωm]2V1(ω)+J2V2+,A2(ω)=iJ2gb2β2χ(ω)ωm,A3(ω)=iJV1(ω)V2iJ3,A4(ω)=Jgb2β2χ(ω)ωmV1(ω),A5(ω)=V1+A1(ω)+iJA3(ω),(10)

    View in Article

    ΔR=ΔR+gbqsgb2|β|2χ(ω),χ(ω)=ωm2/(ωm2ω2+iωγm2),V1±(ω)=κL2±i(ΔLω),V2±(ω)=κR2±i(ΔRω).(11)

    View in Article

    gL(2)(0)=|α|4+4|α|2R1+2Re[α*2R2]+R3(|α|2+R1)2,(12)

    View in Article

    δaL±(t)δaL(t)=12π+XaL±aLdω,(13)

    View in Article

    δaL+(t)=δaL(t),δaL(t)=δaL(t),andXaLaL=|Q(ω)|2Γm(ω)+|F(ω)|2+|H(ω)|2,XaLaL=Q(ω)Q(ω)Γm(ω)+E(ω)F(ω)+G(ω)H(ω).(14)

    View in Article

    ρ˙=1i[H,ρ]+κL2L[aL](ρ)+κR2L[aR](ρ)+γm2(n¯m+1)L[b](ρ)+γm2n¯mL[b](ρ),(15)

    View in Article

    |φ=C00|0,0+C10|1,0+C01|0,1+C20|2,0+C11|1,1+C02|0,2,(16)

    View in Article

    Δopta3+sgn(E)λ1λ24a4,gopt=ωm[Δopt(4Δopt2+5κ2)+ΔFλ3]2(2J2κ2)+2ΔFλ4,(17)

    View in Article

    Baijun Li, Ran Huang, Xunwei Xu, Adam Miranowicz, Hui Jing. Nonreciprocal unconventional photon blockade in a spinning optomechanical system[J]. Photonics Research, 2019, 7(6): 630
    Download Citation