• Laser & Optoelectronics Progress
  • Vol. 55, Issue 5, 051603 (2018)
Min Zhi, Xuan Fang*; , Shouzhu Niu, Dan Fang, Jilong Tang, Dengkui Wang, Xinwei Wang, Xiaohua Wang, and Zhipeng Wei
Author Affiliations
  • State Key Laboratory of High Power Semiconductor Laser, Changchun University of Science and Technology, Changchun, Jilin 130022, China
  • show less
    DOI: 10.3788/LOP55.051603 Cite this Article Set citation alerts
    Min Zhi, Xuan Fang, Shouzhu Niu, Dan Fang, Jilong Tang, Dengkui Wang, Xinwei Wang, Xiaohua Wang, Zhipeng Wei. Effect of Rapid Thermal Annealing on Structural and Luminescence Properties of GaAs/AlGaAs Quantum Wells[J]. Laser & Optoelectronics Progress, 2018, 55(5): 051603 Copy Citation Text show less
    References

    [1] Saxena D, Mokkapati S, Parkinson P. et al. Optically pumped room-temperature GaAs nanowire lasers[J]. Nature Photonics, 7, 963-968(2013). http://www.nature.com/nphoton/journal/v7/n12/abs/nphoton.2013.303.html

    [2] Liu M H, Cui B F, He X et al. Study of high power semiconductor laser with low threshold current[J]. Chinese Journal of Lasers, 43, 0502001(2016).

    [3] Xu Z J, Lin S S, Li X Q. et al. Monolayer MoS2/GaAs heterostructure self-driven photodetector with extremely high detectivity[J]. Nano Energy, 23, 89-96(2016). http://www.sciencedirect.com/science/article/pii/S2211285516300246

    [4] Peytavit E, Arscott S, Lippens D. et al. Terahertz frequency difference from vertically integrated low-temperature-grown GaAs photodetector[J]. Applied Physics Letters, 81, 1174-1176(2002). http://scitation.aip.org/content/aip/journal/apl/81/7/10.1063/1.1499517

    [5] Han H V, Lin C C, Tsai Y L. et al. A highly efficient hybrid GaAs solar cell based on colloidal-quantum-dot-sensitization[J]. Scientific Reports, 4, 5734(2014). http://pubmedcentralcanada.ca/pmcc/articles/PMC4102900/

    [6] Aberg I, Vescovi G, Asoli D. et al. A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun[J]. IEEE Journal of Photovoltaics, 6, 185-190(2016).

    [7] Ma D Y, Chen N F, Tao Q L et al. Performance of space GaInP/(In)GaAs/Ge triple-junction solar cell containing Bragg reflector[J]. Acta Optica Sinica, 37, 1131001(2017).

    [8] Zhou G L, Xu J M, Lu J et al. Irradiation effect of continuous-wave laser on triple-junction GaAs solar cells[J]. Laser & Optoelectronics Progress, 54, 111412(2017).

    [9] Gunapala S D, Bandara S V, Liu J K. et al. 1024×1024 Format pixel co-located simultaneously readable dual-band QWIP focal plane[J]. Infrared Physics & Technology, 52, 395-398(2009). http://www.sciencedirect.com/science/article/pii/S1350449509000498

    [10] Gunapala S D, Bandara S V, Liu J K. et al. 640/spl times/512 pixel long-wavelength infrared narrowband, multiband, and broadband QWIP focal plane arrays[J]. IEEE Transactions on Electron Devices, 50, 2353-2360(2003). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1255596

    [11] Djie H S, Ooi B S, Aimez V. Neutral ion-implantation-induced selective quantum-dot intermixing[J]. Applied Physics Letters, 87, 261102(2005). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4818045

    [12] Kalousek R, Bartošík M et al. Fabrication of nanostructures on Si (100) and GaAs (100) by local anodic oxidation[J]. Applied Surface Science, 253, 2373-2378(2006). http://www.sciencedirect.com/science/article/pii/S016943320600643X

    [13] Deppe D G, Holonyak N. Jr. Atom diffusion and impurity-induced layer disordering in quantum well III-V semiconductor heterostructures[J]. Journal of Applied Physics, 64, R93-R113(1988). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5083426

    [14] Marsh J H, Bradshaw S A, Bryce A C. et al. Impurity induced disordering of GaInAs quantum wells with barriers of AlGaInAs or of GaInAsP[J]. Journal of Electronic Materials, 20, 973-978(1991). http://link.springer.com/article/10.1007/BF03030191

    [15] Du S C, Fu L, Tan H H. et al. Investigations of impurity-free vacancy disordering in (Al)InGaAs(P)/InGaAs quantum wells[J]. Semiconductor Science and Technology, 25, 055014(2010). http://adsabs.harvard.edu/abs/2010sesct..25e5014d

    [16] Zhao J, Feng Z C, Wang Y C. et al. Luminescent characteristics of InGaAsP/InP multiple quantum well structures by impurity-free vacancy disordering[J]. Surface and Coatings Technology, 200, 3245-3249(2006). http://journals.cambridge.org/article_S1946427400624326

    [17] Sengupta D K, Horton T, Fang W. et al. Redshifting of a bound-to-continuum GaAs/AlGaAs quantum-well infrared photodetector response via laser annealing[J]. Applied Physics Letters, 70, 3573-3575(1997). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4891386

    [18] Xie K, Wie C R, Varriano J A. et al. Improvement of GaAs/AlGaAs quantum well laser diodes by rapid thermal annealing[J]. Journal of Electronic Materials, 23, 1-6(1994). http://link.springer.com/article/10.1007/BF02651259

    [19] Li L H, Pan Z, Xu Y Q. et al. Effects of rapid thermal annealing and SiO2 encapsulation on GaNAs/GaAs single quantum wells grown by plasma-assisted molecular-beam epitaxy[J]. Applied Physics Letters, 78, 2488-2490(2001). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4896355

    [20] Ni H Q, Niu Z C, Xu X H. et al. High-indium-content InxGa1-xAs/GaAs quantum wells with emission wavelengths above 1.25 μm at room temperature[J]. Applied Physics Letters, 84, 5100-5102(2004). http://scitation.aip.org/content/aip/journal/apl/84/25/10.1063/1.1762985

    [21] Levine B F. Quantum-well infrared photodetectors[J]. Journal of Applied Physics, 74, R1-R81(1993).

    [22] Cheng X K, Huang B B, Xu X G et al. Interference of electron in GaAs/AlGaAs multi-quantum well structure[J]. Acta Ectronica Sinica, 29, 692-694(2001).

    [23] Roch T, Schrenk W, Anders S. et al. X-ray investigation of interface broadening by rapid thermal processing[J]. The Society for Micro-electronics, 109-111(2004).

    [24] Dawson P, Duggan G, Ralph H I. et al. Free excitons in room-temperature photoluminescence of GaAs-AlxGa1-xAs multiple quantum wells[J]. Physical Review B, 28, 7381-7383(1983).

    [25] Harrison P. Quantum wells, wires and dots: theoretical and computational physics of semiconductor nanostructures[M]. 3rd ed. Chichester: John Wiley & Sons(2009).

    [26] Levine B F, Bethea C G, Shen V O. et al. Tunable long-wavelength detectors using graded barrier quantum wells grown by electron beam source molecular beam epitaxy[J]. Applied Physics Letters, 57, 383-385(1990). http://scitation.aip.org/content/aip/journal/apl/57/4/10.1063/1.103699

    [27] Willardson R K, Beer A C. Semiconductors and semimetals[M]. New York: Academic press(1977).

    [28] Li H, Cheng X K, Zhou J M[J]. et al. Photoluminesecence of doped GaAs/ Al0.3Ga0.7As superlatticeVacuum Electronics, 2005, 17-19.

    [29] Li L H, Pan Z, Zhang W. et al. Effects of rapid thermal annealing on the optical properties of GaNxAs1-x/GaAs single quantum well structure grown by molecular beam epitaxy[J]. Journal of Applied Physics, 87, 245-248(2000).

    [30] Smith P E. Atomic diffusion and interface electronic structure of III-V heterojunctions and their dependence on epitaxial growth transitions and annealing[D]. Columbus: The Ohio State University(2007).

    [31] Li N, Lu W, Li N et al. Influence on GaAs/AlGaAs quantum well infrared photodetector of proton implantation and rapid thermal annealing[J]. Journal of Infrared and Millimeter Waves, 19, 25-28(2000).

    [32] Sousa M A, Esteves T C, Sedrine N B. et al. Influence of nitrogen implantation and thermal annealing on the optical properties of green emitting InGaN/GaN multiple quantum wells[J]. Scientific Reports, 5, 09703(2015). http://projects.itn.pt/KLorenz/FCT2015/26_26410_1_art_file_784597_np68xp.pdf

    Min Zhi, Xuan Fang, Shouzhu Niu, Dan Fang, Jilong Tang, Dengkui Wang, Xinwei Wang, Xiaohua Wang, Zhipeng Wei. Effect of Rapid Thermal Annealing on Structural and Luminescence Properties of GaAs/AlGaAs Quantum Wells[J]. Laser & Optoelectronics Progress, 2018, 55(5): 051603
    Download Citation