• Journal of Semiconductors
  • Vol. 44, Issue 1, 011002 (2023)
Xinhao Zhang1、2 and Bo Peng1、2、*
Author Affiliations
  • 1National Engineering Research Center of Electromagnetic Radiation Control Materials, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
  • 2Key Laboratory of Multi-spectral Absorbing Materials and Structures of Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, China
  • show less
    DOI: 10.1088/1674-4926/44/1/011002 Cite this Article
    Xinhao Zhang, Bo Peng. The twisted two-dimensional ferroelectrics[J]. Journal of Semiconductors, 2023, 44(1): 011002 Copy Citation Text show less
    References

    [1] X J Chai, J Jiang, Q H Zhang et al. Nonvolatile ferroelectric field-effect transistors. Nat Commun, 11, 2811(2020).

    [2] R C G Naber, C Tanase, P W M Blom et al. High-performance solution-processed polymer ferroelectric field-effect transistors. Nature Mater, 4, 243(2005).

    [3] M W Si, A K Saha, S J Gao et al. A ferroelectric semiconductor field-effect transistor. Nat Electron, 2, 580(2019).

    [4] M W Si, P Y Liao, G Qiu et al. Ferroelectric field-effect transistors based on MoS2 and CuInP2S6 two-dimensional van der waals heterostructure. ACS Nano, 12, 6700(2018).

    [5] S Y Wan, Y Li, W Li et al. Nonvolatile ferroelectric memory effect in ultrathin α-In2Se3. Adv Funct Mater, 29, 1808606(2019).

    [6] Z D Luo, M M Yang, Y Liu et al. Emerging opportunities for 2D semiconductor/ferroelectric transistor-structure devices. Adv Mater, 33, 2005620(2021).

    [7] G Wu, B Tian, L Liu et al. Programmable transition metal dichalcogenide homojunctions controlled by nonvolatile ferroelectric domains. Nat Electron, 3, 43(2020).

    [8] Z D Luo, X Xia, M M Yang et al. Artificial optoelectronic synapses based on ferroelectric field-effect enabled 2D transition metal dichalcogenide memristive transistors. ACS Nano, 14, 746(2020).

    [9] L Lv, F W Zhuge, F J Xie et al. Reconfigurable two-dimensional optoelectronic devices enabled by local ferroelectric polarization. Nat Commun, 10, 3331(2019).

    [10] T Li, P Sharma, A Lipatov et al. Polarization-mediated modulation of electronic and transport properties of hybrid MoS2-BaTiO3-SrRuO3 tunnel junctions. Nano Lett, 17, 922(2017).

    [11] X Wang, P Wang, J Wang et al. Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics. Adv Mater, 27, 6575(2015).

    [12] A Lipatov, P Sharma, A Gruverman et al. Optoelectrical molybdenum disulfide (MoS2)—Ferroelectric memories. ACS Nano, 9, 8089(2015).

    [13] H S Lee, S W Min, M K Park et al. MoS2Nanosheets for top-gate nonvolatile memory transistor channel. Small, 8, 3111(2012).

    [14] J F Scott, C A Paz de Araujo. Ferroelectric memories. Science, 246, 1400(1989).

    [15] A Q Jiang, C Wang, K J Jin et al. A resistive memory in semiconducting BiFeO3 thin-film capacitors. Adv Mater, 23, 1277(2011).

    [16] H Ishiwara. Ferroelectric random access memories. J Nanosci Nanotechnol, 12, 7619(2012).

    [17] T Mikolajick, S Slesazeck, M H Park et al. Ferroelectric hafnium oxide for ferroelectric random-access memories and ferroelectric field-effect transistors. MRS Bull, 43, 340(2018).

    [18] S D Hyun, H W Park, M H Park et al. Field-induced ferroelectric Hf1–xZrxO2 thin films for high-k dynamic random access memory. Adv Electron Mater, 6, 2000631(2020).

    [19] S Wang, L Liu, L Gan et al. Two-dimensional ferroelectric channel transistors integrating ultra-fast memory and neural computing. Nat Commun, 12, 1(2021).

    [20] M Dai, K Li, F Wang et al. Intrinsic dipole coupling in 2D van der Waals ferroelectrics for gate-controlled switchable rectifier. Adv Electron Mater, 6, 1900975(2020).

    [21] S Y Wan, Y Li, W Li et al. Room-temperature ferroelectricity and a switchable diode effect in two-dimensional α-In2Se3 thin layers. Nanoscale, 10, 14885(2018).

    [22] S M Poh, S J R Tan, H Wang et al. Molecular-beam epitaxy of two-dimensional In2Se3 and its giant electroresistance switching in ferroresistive memory junction. Nano Lett, 18, 6340(2018).

    [23] J Yoon, S Hong, Y W Song et al. Understanding tunneling electroresistance effect through potential profile in Pt/Hf0.5Zr0.5O2/TiN ferroelectric tunnel junction memory. Appl Phys Lett, 115, 153502(2019).

    [24] Y Goh, S Jeon. Enhanced tunneling electroresistance effects in HfZrO-based ferroelectric tunnel junctions by high-pressure nitrogen annealing. Appl Phys Lett, 113, 052905(2018).

    [25] F Ambriz-Vargas, G Kolhatkar, M Broyer et al. A complementary metal oxide semiconductor process-compatible ferroelectric tunnel junction. ACS Appl Mater Interfaces, 9, 13262(2017).

    [26] J Y Park, K Yang, D H Lee et al. A perspective on semiconductor devices based on fluorite-structured ferroelectrics from the materials–device integration perspective. J Appl Phys, 128, 240904(2020).

    [27] Z Xi, J Ruan, C Li et al. Giant tunnelling electroresistance in metal/ferroelectric/semiconductor tunnel junctions by engineering the Schottky barrier. Nat Commun, 8, 1(2017).

    [28] F Xue, X He, W Liu et al. Optoelectronic ferroelectric domain‐wall memories made from a single Van Der Waals ferroelectric. Adv Funct Mater, 30, 2004206(2020).

    [29] K Xu, W Jiang, X S Gao et al. Optical control of ferroelectric switching and multifunctional devices based on van der Waals ferroelectric semiconductors. Nanoscale, 12, 23488(2020).

    [30] L Wang, X Wang, Y Zhang et al. Exploring ferroelectric switching in α-In2Se3 for neuromorphic computing. Adv Funct Mater, 30, 2004609(2020).

    [31] Y S Zhang, L Wang, H Chen et al. Analog and digital mode α-In2Se3 memristive devices for neuromorphic and memory applications. Adv Electron Mater, 7, 2100609(2021).

    [32] K C Kwon, Y S Zhang, L Wang et al. In-plane ferroelectric tin monosulfide and its application in a ferroelectric analog synaptic device. ACS Nano, 14, 7628(2020).

    [33] J H Bian, Z Y Cao, P Zhou. Neuromorphic computing: Devices, hardware, and system application facilitated by two-dimensional materials. Appl Phys Rev, 8, 041313(2021).

    [34] M Dai, Z Wang, F Wang et al. Two-dimensional van der Waals materials with aligned in-plane polarization and large piezoelectric effect for self-powered piezoelectric sensors. Nano Lett, 19, 5410(2019).

    [35] H J Kim, K Schanze. Introducing ACS applied electronic materials. ACS Appl Electron Mater, 1, 1(2019).

    [36] F Xue, J Zhang, W Hu et al. Multidirection piezoelectricity in mono- and multilayered hexagonal α-In2Se3. ACS Nano, 12, 4976(2018).

    [37] J F Scott. Applications of modern ferroelectrics. Science, 315, 954(2007).

    [38] V K Prateek, R K Thakur. Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: Synthesis, dielectric properties, and future aspects. Chem Rev, 116, 4260(2016).

    [39] J Valasek. Piezo-electric and allied phenomena in rochelle salt. Phys Rev, 17, 475(1921).

    [40] J Junquera, P Ghosez. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature, 422, 506(2003).

    [41] D D Fong, G B Stephenson, S K Streiffer et al. Ferroelectricity in ultrathin perovskite films. Science, 304, 1650(2004).

    [42] K S Novoselov, A K Geim, S V Morozov et al. Electric field effect in atomically thin carbon films. Science, 306, 666(2004).

    [43] D Lee, H Lu, Y Gu et al. Emergence of room-temperature ferroelectricity at reduced dimensions. Science, 349, 1314(2015).

    [44] S G Yuan, X Luo, H L Chan et al. Room-temperature ferroelectricity in MoTe2 down to the atomic monolayer limit. Nat Commun, 10, 1775(2019).

    [45] Y Zhou, D Wu, Y H Zhu et al. Out-of-plane piezoelectricity and ferroelectricity in layered α-In2Se3 nanoflakes. Nano Lett, 17, 5508(2017).

    [46] C Cui, W J Hu, X Yan et al. Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3. Nano Lett, 18, 1253(2018).

    [47] J Xiao, H Zhu, Y Wang et al. Intrinsic two-dimensional ferroelectricity with dipole locking. Phys Rev Lett, 120, 227601(2018).

    [48] W F Io, S G Yuan, S Y Pang et al. Temperature- and thickness-dependence of robust out-of-plane ferroelectricity in CVD grown ultrathin van der Waals α-In2Se3 layers. Nano Res, 13, 1897(2020).

    [49] C Zheng, L Yu, L Zhu et al. Room temperature in-plane ferroelectricity in van der Waals In2Se3. Sci Adv, 4, eaar7720(2018).

    [50] B Lv, Z Yan, W Xue et al. Layer-dependent ferroelectricity in 2H-stacked few-layer α-In2Se3. Mater Horiz, 8, 1472(2021).

    [51] A Belianinov, Q He, A Dziaugys et al. CuInP2S6 room temperature layered ferroelectric. Nano Lett, 15, 3808(2015).

    [52] F C Liu, L You, K L Seyler et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat Commun, 7, 12357(2016).

    [53] K Chang, J Liu, H Lin et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science, 353, 274(2016).

    [54] Z Fei, W Zhao, T A Palomaki et al. Ferroelectric switching of a two-dimensional metal. Nature, 560, 336(2018).

    [55] L You, F C Liu, H S Li et al. In-plane ferroelectricity in thin flakes of van der waals hybrid perovskite. Adv Mater, 30, 1803249(2018).

    [56] A K Geim, I V Grigorieva. Van der Waals heterostructures. Nature, 499, 419(2013).

    [57] Morell E Suárez, J D Correa, P Vargas et al. Flat bands in slightly twisted bilayer graphene: Tight-binding calculations. Phys Rev B, 82, 121407(2010).

    [58] M Yankowitz, S Chen, H Polshyn et al. Tuning superconductivity in twisted bilayer graphene. Science, 363, 1059(2019).

    [59] L Wang, E M Shih, A Ghiotto et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat Mater, 19, 861(2020).

    [60] Y H Tang, L Z Li, T X Li et al. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature, 579, 353(2020).

    [61] C Shen, Y Chu, Q Wu et al. Correlated states in twisted double bilayer graphene. Nat Phys, 16, 520(2020).

    [62] A L Sharpe, E J Fox, A W Barnard et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science, 365, 605(2019).

    [63] M Serlin, C L Tschirhart, H Polshyn et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science, 367, 900(2020).

    [64] E C Regan, D Wang, C Jin et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature, 579, 359(2020).

    [65] X Liu, Z Hao, E Khalaf et al. Tunable spin-polarized correlated states in twisted double bilayer graphene. Nature, 583, 221(2020).

    [66] G H Li, A Luican, J M B Lopes dos Santos et al. Observation of Van Hove singularities in twisted graphene layers. Nat Phys, 6, 109(2010).

    [67] G R Chen, A L Sharpe, E J Fox et al. Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice. Nature, 579, 56(2020).

    [68] G R Chen, L L Jiang, S Wu et al. Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nat Phys, 15, 237(2019).

    [69] Y Cao, D Rodan-Legrain, O Rubies-Bigorda et al. Tunable correlated states and spin-polarized phases in twisted bilayer-bilayer graphene. Nature, 583, 215(2020).

    [70] Y Cao, V Fatemi, S A Fang et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature, 556, 43(2018).

    [71] Y Cao, V Fatemi, A Demir et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature, 556, 80(2018).

    [72] G W Burg, J H Zhu, T Taniguchi et al. Correlated insulating states in twisted double bilayer graphene. Phys Rev Lett, 123, 197702(2019).

    [73] R Bistritzer, A H MacDonald. Moiré bands in twisted double-layer graphene. PNAS, 108, 12233(2011).

    [74] Z R Zheng, Q Ma, Z Bi et al. Unconventional ferroelectricity in moiré heterostructures. Nature, 588, 71(2020).

    [75] K Yasuda, X Wang, K Watanabe et al. Stacking-engineered ferroelectricity in bilayer boron nitride. Science, 372, 1458(2021).

    [76] X Wang, K Yasuda, Y Zhang et al. Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metal dichalcogenides. Nat Nanotechnol, 17, 367(2022).

    [77] W J Ding, J B Zhu, Z Wang et al. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials. Nat Commun, 8, 14956(2017).

    [78] H Ishiwara. Current status and prospects of FET-type ferroelectric memories. International Electron Devices Meeting, 1, 725(2001).

    [79] T P Ma, J P Han. Why is nonvolatile ferroelectric memory field-effect transistor still elusive. IEEE Electron Device Lett, 23, 386(2002).

    [80] E Yurchuk, J Muller, S Muller et al. Charge-trapping phenomena in HfO2-based FeFET-type nonvolatile memories. IEEE Trans Electron Devices, 63, 3501(2016).

    [81] A Simon, J Ravez, V Maisonneuve et al. Paraelectric-ferroelectric transition in the lamellar thiophosphate CuInP2S6. Chem Mater, 6, 1575(1994).

    [82] V Maisonneuve, J M Reau, M Dong et al. Ionic conductivity in ferroic CuInP2S6 and CuCrP2S6. Ferroelectrics, 196, 257(1997).

    [83] H J Kim, S H Kang, I Hamada et al. Origins of the structural phase transitions in MoTe2 and WTe2. Phys Rev B, 95, 180101(2017).

    [84] D H Keum, S Cho, J H Kim et al. Bandgap opening in few-layered monoclinic MoTe2. Nat Phys, 11, 482(2015).

    [85] X F Qian, J W Liu, L Fu et al. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science, 346, 1344(2014).

    [86] G Eda, T Fujita, H Yamaguchi et al. Coherent atomic and electronic heterostructures of single-layer MoS2. ACS Nano, 6, 7311(2012).

    [87] E Bruyer, D Di Sante, P Barone et al. Possibility of combining ferroelectricity and Rashba-like spin splitting in monolayers of the 1 T-type transition-metal dichalcogenides MX2 (M = Mo, W; X = S, Se, Te). Phys Rev B, 94, 195402(2016).

    [88] S N Shirodkar, U V Waghmare. Emergence of ferroelectricity at a metal-semiconductor transition in a 1T monolayer of MoS2. Phys Rev Lett, 112, 157601(2014).

    [89] Q Yang, M H Wu, J Li. Origin of two-dimensional vertical ferroelectricity in WTe2 bilayer and multilayer. J Phys Chem Lett, 9, 7160(2018).

    [90] A H Castro Neto, F Guinea, N M R Peres et al. The electronic properties of graphene. Rev Mod Phys, 81, 109(2009).

    [91] S C de la Barrera, S Aronson, Z R Zheng et al. Cascade of isospin phase transitions in Bernal-stacked bilayer graphene at zero magnetic field. Nat Phys, 18, 771(2022).

    [92] G Constantinescu, A Kuc, T Heine. Stacking in bulk and bilayer hexagonal boron nitride. Phys Rev Lett, 111, 036104(2013).

    [93] H J Park, J Cha, M Choi et al. One-dimensional hexagonal boron nitride conducting channel. Sci Adv, 6, eaay4958(2020).

    [94] L Li, M H Wu. Binary compound bilayer and multilayer with vertical polarizations: Two-dimensional ferroelectrics, multiferroics, and nanogenerators. ACS Nano, 11, 6382(2017).

    [95] L C Towle, V Oberbeck, B E Brown et al. Molybdenum diselenide: Rhombohedral high pressure-high temperature polymorph. Science, 154, 895(1966).

    [96] A Weston, Y Zou, V Enaldiev et al. Atomic reconstruction in twisted bilayers of transition metal dichalcogenides. Nat Nanotechnol, 15, 592(2020).

    [97] C J Cui, F Xue, W J Hu et al. Two-dimensional materials with piezoelectric and ferroelectric functionalities. npj 2D Mater Appl, 2, 18(2018).

    Xinhao Zhang, Bo Peng. The twisted two-dimensional ferroelectrics[J]. Journal of Semiconductors, 2023, 44(1): 011002
    Download Citation