• Journal of Infrared and Millimeter Waves
  • Vol. 40, Issue 6, 709 (2021)
Wen-Cheng YUE1、*, Qing WANG1、2, Xin-Yu LI1、3, Shu-Xiao WANG1、2, and Ming-Bin YU1、4
Author Affiliations
  • 1Laboratory of Silicon-Based Materials and Integrated Devices,Shanghai Institute of Microsystem and Information Technology,Chinese Academy of Sciences,Shanghai 200050,China
  • 2University of Chinese Academy of Sciences,Beijing 100049,China
  • 3Department of Electronic Engineering,Xi’an University of Technology,Xi’an 710048,China
  • 4Shanghai Industrial μTechnology Research Institute,Shanghai 201800,China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2021.06.001 Cite this Article
    Wen-Cheng YUE, Qing WANG, Xin-Yu LI, Shu-Xiao WANG, Ming-Bin YU. All-dielectric antislot waveguide with subwavelength mode confinement and its high-efficiency coupling with input/output fiber[J]. Journal of Infrared and Millimeter Waves, 2021, 40(6): 709 Copy Citation Text show less
    References

    [1] R Kirchain, L Kimerling. A roadmap for nanophotonics. Nat. Photon., 1, 303-305(2007).

    [2] D F Welch, F A Kish, R Nagarajan et al. The realization of large-scale photonic integrated circuits and the associated impact on fber-optic communication systems. J. Lightwave Tech., 24, 4674-4683(2006).

    [3] S A Maier. Plasmonics: fundamentals and applications(2007).

    [4] S A Maier, P G Kik, H A Atwater. Observation of coupled plasmonpolariton modes in Au nanoparticle chain waveguides of different lengths: estimation of waveguide loss. Appl. Phys. Lett, 81, 1714-1716(2002).

    [5] A L Pyayt, B Wiley, Y Xia et al. Integration of photonic and silver nanowire plasmonic waveguides. Nat. Nanotech., 3, 660-665(2008).

    [6] R F Oulton, V J Sorger, T Zentgraf et al. Plasmon lasers at deep subwavelength scale. Nature, 461, 629-632(2009).

    [7] R F Oulton, V J Sorger, D A Genov et al. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat. Photon., 2, 496-500(2008).

    [8] D K Gramotnev, S I Bozhevolnyi. Plasmonics beyond the diffraction limit. Nat. Photon., 4, 83-91(2010).

    [9] M T Hill, Y S Oei, B Smalbrugge et al. Lasing in metallic-coated nanocavities. Nat. Photon., 1, 589-594(2007).

    [10] A V Krasavin, A V Zayats. Silicon-based plasmonic waveguides. Opt. Express, 18, 11791-11799(2010).

    [11] R F Oulton, G Bartal, D F P Pile et al. Confinement and propagation characteristics of subwavelength plasmonic modes. J. New Phys., 10, 105018-105018(2008).

    [12] S Matsuo, A Shinya, T Kakitsuka et al. High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted. Nat. Photon, 4, 648-654(2010).

    [13] Y Takahashi, Y Inui, M Chihara et al. A micrometre-scale Raman silicon laser with a microwatt threshold. Nature, 498, 470-474(2013).

    [14] S Noda, M Fujita, T Asano. Spontaneous-emission control by photonic crystals and nanocavities. Nat. Photon., 1, 449-458(2007).

    [15] S Kim, J Jin, Y J Kim et al. High-harmonic generation by resonant plasmon field enhancement. Nature, 453, 757-760(2008).

    [16] K Nozaki, A Shinya, S Matsuo et al. Ultralow-power all-optical RAM based on nanocavities. Nat. Photon., 6, 248-252(2012).

    [17] H A Atwater, A Polman. Plasmonics for improved photovoltaic devices. Nat. Mater., 9, 205-213(2010).

    [18] M A Green, S Pillai. Harnessing plasmonics for solar cells. Nat. Photon., 6, 130-132(2012).

    [19] M L Brongersma, Y Cui, S Fan. Light management for photovoltaics using high-index nanostructures. Nat. Mater., 13, 451-460(2014).

    [20] J A Schuller, E S Barnard, W Cai et al. Plasmonics for extreme light concentration and manipulation. Nat. Mater., 9, 193-204(2010).

    [21] G T Reed, G Mashanovich, F Y Gardes et al. Silicon optical modulators. Nat. Photon., 4, 518-526(2010).

    [22] K Nozaki, T Tanabe, A Shinya et al. Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nat. Photon., 4, 477-483(2010).

    [23] A Melikyan, L Alloatti, A Muslija et al. High-speed plasmonic phase modulators. Nat. Photon., 8, 229-233(2014).

    [24] Q Xu, B Schmidt, S Pradhan et al. Micrometre-scale silicon electro-optic modulator. Nature, 435, 325-327(2005).

    [25] A G Brolo. Plasmonics for future biosensors. Nat. Photon., 6, 709-713(2012).

    [26] S Chakravarty, W C Lai, Y Zou et al. Multiplexed specific label-free detection of NCI-H358 lung cancer cell line lysates with silicon based photonic crystal microcavity biosensors. Biosens. Bioelectron., 43, 50-55(2013).

    [27] S Hu, Y Zhao, K Qin et al. Enhancing the sensitivity of label-free silicon photonic biosensors through increased probe molecule density. ACS Photon., 1, 590-597(2014).

    [28] H Ditlbacher, J R Krenn, G Schider et al. Two-dimensional optics with surface plasmon polaritons. Appl. Phys. Lett, 81, 1762-1764(2002).

    [29] A V Zayats, I I Smolyaninov, A A Maradudin. Nano-optics of surface plasmon polaritons. Phys. Rep., 408, 131-314(2005).

    [30] H Raether. Surface plasmons on smooth and rough surfaces and on gratings(1988).

    [31] V R Almeida, Q Xu, C A Barrios et al. Guiding and confining light in void nanostructure. Opt. Lett, 29, 1209-1211(2004).

    [32] Q Xu, V R Almeida, R R Panepucci et al. Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material. Opt. Lett, 29, 1626-1628(2004).

    [33] M Pu, L Liu, H Ou et al. Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide. Opt. Commun., 283, 3678-3682(2010).

    [34] T W Ebbesen, C Genet, S I Bozhevolnyi. Surface-plasmon circuitry. Phys. Today, 61, 44-50(2008).

    [35] F Dell’Olio, V M Passaro. Optical sensing by optimized silicon slot waveguides. Opt. Express, 15, 4977-4993(2007).

    [36] Z Guo, S Park, J Yoon et al. Recent progress in the development of near-infrared fluorescent probes for bioimaging applications. Chem. Soc. Rev, 43, 16-29(2013).

    Wen-Cheng YUE, Qing WANG, Xin-Yu LI, Shu-Xiao WANG, Ming-Bin YU. All-dielectric antislot waveguide with subwavelength mode confinement and its high-efficiency coupling with input/output fiber[J]. Journal of Infrared and Millimeter Waves, 2021, 40(6): 709
    Download Citation