• Laser & Optoelectronics Progress
  • Vol. 58, Issue 12, 1236001 (2021)
Xinxue Wu1, Chaolong Fang1、*, Zhihong Li1, and Yaoju Zhang1、2、**
Author Affiliations
  • 1Wenzhou Key Laboratory of Micro⁃Nano Optoelectronic Devices, College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
  • 2College of Electronics and Communication Engineering, Quanzhou University of Information Engineering, Quanzhou, Fujian 362000, China
  • show less
    DOI: 10.3788/LOP202158.1236001 Cite this Article Set citation alerts
    Xinxue Wu, Chaolong Fang, Zhihong Li, Yaoju Zhang. Simple and High-Efficiency Preparation Method of Biometric 3D Artificial Compound Eyes for Wide-Field Imaging[J]. Laser & Optoelectronics Progress, 2021, 58(12): 1236001 Copy Citation Text show less
    References

    [1] Stollberg K, Brückner A, Duparré J et al. The Gabor superlens as an alternative wafer-level camera approach inspired by superposition compound eyes of nocturnal insects[J]. Optics Express, 17, 15747-15759(2009). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-18-15747

    [2] Jeong K H. Biologically inspired artificial compound eyes[J]. Science, 312, 557-561(2006). http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=20788641&site=ehost-live

    [3] Floreano D, Pericet-Camara R, Viollet S et al. Miniature curved artificial compound eyes[J]. Proceedings of the National Academy of Sciences, 110, 9267-9272(2013). http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=88092641&site=ehost-live

    [4] Yoshimoto K, Yamada K, Sasaki N et al. Evaluation of a compound eye type tactile endoscope[J]. Endoscopic Microscopy VIII, 8575, 85750Z(2013). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1668072

    [5] Ko H C, Stoykovich M P, Song J Z et al. A hemispherical electronic eye camera based on compressible silicon optoelectronics[J]. Nature, 454, 748-753(2008). http://www.ingentaconnect.com/content/np/00280836/2008/00000454/00007205/art00027

    [6] Prabhakara R S, Wright C H G, Barrett S F. Motion detection: a biomimetic vision sensor versus a CCD camera sensor[J]. IEEE Sensors Journal, 12, 298-307(2012).

    [7] Song Y M, Xie Y Z, Malyarchuk V et al. Digital cameras with designs inspired by the arthropod eye[J]. Nature, 497, 95-99(2013).

    [8] Ma Z C, Hu X Y, Zhang Y L et al. Smart compound eyes enable tunable imaging[J]. Advanced Functional Materials, 29, 1903340(2019). http://onlinelibrary.wiley.com/doi/10.1002/adfm.201903340

    [9] Wu D, Wang J N, Niu L G et al. Bioinspired fabrication of high-quality 3D artificial compound eyes by voxel-modulation femtosecond laser writing for distortion-free wide-field-of-view imaging[J]. Advanced Optical Materials, 2, 751-758(2014). http://onlinelibrary.wiley.com/doi/10.1002/adom.201400175/abstract

    [10] Li J, Wang W J, Mei X S et al. The formation of convex microstructures by laser irradiation of dual-layer polymethylmethacrylate (PMMA)[J]. Optics & Laser Technology, 106, 461-468(2018). http://www.sciencedirect.com/science/article/pii/S0030399217316031

    [11] Shao J Y, Ding Y C, Zhai H P et al. Fabrication of large curvature microlens array using confined laser swelling method[J]. Optics Letters, 38, 3044-3046(2013). http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-38-16-3044

    [12] Sun Y L, Dong W F, Niu L G et al. Protein-based soft micro-optics fabricated by femtosecond laser direct writing[J]. Light: Science & Applications, 3, e129(2014). http://www.nature.com/articles/lsa201410

    [13] Wu D, Wu S Z, Niu L G et al. High numerical aperture microlens arrays of close packing[J]. Applied Physics Letters, 97, 031109(2010). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5520003

    [14] Xia H, Zhang W Y, Wang F F et al. Three-dimensional micronanofabrication via two-photon-excited photoisomerization[J]. Applied Physics Letters, 95, 083118(2009). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5230450

    [15] Chen F, Liu H W, Yang Q et al. Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method[J]. Optics Express, 18, 20334(2010).

    [16] Fang C L, Zheng J, Zhang Y J et al. Antireflective paraboloidal microlens film for boosting power conversion efficiency of solar cells[J]. ACS Applied Materials & Interfaces, 10, 21950-21956(2018).

    [17] Shao J Y, Ding Y C, Wang W J et al. Generation of fully-covering hierarchical micro-/nano-structures by nanoimprinting and modified laser swelling[J]. Small, 10, 2595-2601(2014). http://europepmc.org/abstract/med/24616236

    [18] Wu F F, Shi G, Xu H B et al. Fabrication of antireflective compound eyes by imprinting[J]. ACS Applied Materials & Interfaces, 5, 12799-12803(2013). http://www.ncbi.nlm.nih.gov/pubmed/24294975

    [19] Gao X, Yan X, Yao X et al. The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography[J]. Advanced Materials, 19, 2213-2217(2007).

    [20] Ko D H, Tumbleston J R, Henderson K J et al. Biomimetic microlens array with antireflective “moth-eye” surface[J]. Soft Matter, 7, 6404-6407(2011). http://www.tandfonline.com/servlet/linkout?suffix=cit0013&dbid=16&doi=10.1080%2F05704928.2017.1324469&key=10.1039%2Fc1sm05302g

    [21] Hung S Y. Optimal design using thermal reflow and caulking for fabrication of gapless microlens array mold inserts[J]. Optical Engineering, 46, 043402(2007). http://spie.org/x648.html?product_id=746153

    [22] Wang M J, Wang T S, Shen H H et al. Subtle control on hierarchic reflow for the simple and massive fabrication of biomimetic compound eye arrays in polymers for imaging at a large field of view[J]. Journal of Materials Chemistry C, 4, 108-112(2016). http://d.wanfangdata.com.cn/periodical/f86b64386067bc4693798e97e5e6821d

    [23] Wang T, Yu W, Li C et al. Biomimetic compound eye with a high numerical aperture and anti-reflective nanostructures on curved surfaces[J]. Optics Letters, 37, 2397-2399(2012).

    [24] Serra F, Gharbi M A, Luo Y M et al. Curvature-driven, one-step assembly of reconfigurable smectic liquid crystal “compound eye” lenses[J]. Advanced Optical Materials, 3, 1287-1292(2015). http://onlinelibrary.wiley.com/doi/10.1002/adom.201500153

    [25] Zhang D W, Xu Q, Fang C L et al. Fabrication of a microlens array with controlled curvature by thermally curving photosensitive gel film beneath microholes[J]. ACS Applied Materials & Interfaces, 9, 16604-16609(2017). http://pubs.acs.org/doi/10.1021/acsami.7b00766

    [26] Jiang C B, Li X M, Tian H M et al. Lateral flow through a parallel gap driven by surface hydrophilicity and liquid edge pinning for creating microlens array[J]. ACS Applied Materials & Interfaces, 6, 18450-18456(2014). http://europepmc.org/abstract/med/25348103

    [27] Li X M, Ding Y C, Shao J Y et al. Fabrication of microlens arrays with well-controlled curvature by liquid trapping and electrohydrodynamic deformation in microholes[J]. Advanced Materials, 24, OP165-OP169(2012).

    [28] Li X M, Tian H M, Ding Y C et al. Electrically templated dewetting of a UV-curable prepolymer film for the fabrication of a concave microlens array with well-defined curvature[J]. ACS Applied Materials & Interfaces, 5, 9975-9982(2013). http://europepmc.org/abstract/med/23902897

    [29] Bian H, Wei Y, Yang Q et al. Direct fabrication of compound-eye microlens array on curved surfaces by a facile femtosecond laser enhanced wet etching process[J]. Applied Physics Letters, 109, 221109(2016). http://scitation.aip.org/content/aip/journal/apl/109/22/10.1063/1.4971334

    [30] Liu H W, Chen F, Yang Q et al. Fabrication of bioinspired omnidirectional and gapless microlens array for wide field-of-view detections[J]. Applied Physics Letters, 100, 133701(2012). http://scitation.aip.org/content/aip/journal/apl/100/13/10.1063/1.3696019

    [31] Liang Y, Zhu T F, Xi M J et al. Fabrication of biomimetic compound eye on single crystal diamond[J]. Optics Express, 27, 20508-20515(2019). http://www.ncbi.nlm.nih.gov/pubmed/31510143

    [32] Deng Z F, Chen F, Yang Q et al. Compound eyes: dragonfly-eye-inspired artificial compound eyes with sophisticated imaging[J]. Advanced Functional Materials, 26, 1853(2016).

    [33] Li J, Wang W J, Mei X S et al. Fabrication of artificial compound eye with controllable field of view and improved imaging[J]. ACS Applied Materials & Interfaces, 12, 8870-8878(2020). http://www.researchgate.net/publication/339006397_Fabrication_of_Artificial_Compound_Eye_with_Controllable_Field_of_View_and_Improved_Imaging

    [34] Qu P B, Chen F, Liu H W et al. A simple route to fabricate artificial compound eye structures[J]. Optics Express, 20, 5775-5782(2012).

    [35] Kuo W K, Kuo G F, Lin S Y et al. Fabrication and characterization of artificial miniaturized insect compound eyes for imaging[J]. Bioinspiration & Biomimetics, 10, 056010(2015). http://www.ncbi.nlm.nih.gov/pubmed/26414303

    [36] Cao J J, Hou Z S, Tian Z N et al. Bioinspired zoom compound eyes enable variable-focus imaging[J]. ACS Applied Materials & Interfaces, 12, 10107-10117(2020).

    [37] Chang C Y, Yang S Y, Huang L S et al. Fabrication of plastic microlens array using gas-assisted micro-hot-embossing with a silicon mold[J]. Infrared Physics & Technology, 48, 163-173(2006). http://www.sciencedirect.com/science/article/pii/S1350449505001222

    [38] Kim J Y, Brauer N B, Fakhfouri V et al. Hybrid polymer microlens arrays with high numerical apertures fabricated using simple ink-jet printing technique[J]. Optical Materials Express, 1, 259-269(2011). http://www.tandfonline.com/servlet/linkout?suffix=CIT0007&dbid=16&doi=10.1080%2F01694243.2018.1461447&key=10.1364%2FOME.1.000259

    [39] Yang Y D, Huang X P, Zhang X Y et al. Supercritical fluid-driven polymer phase separation for microlens with tunable dimension and curvature[J]. ACS Applied Materials & Interfaces, 8, 8849-8858(2016). http://europepmc.org/abstract/MED/26999714

    [40] Yang H, Chao C K, Wei M K et al. High fill-factor microlens array mold insert fabrication using a thermal reflow process[J]. Journal of Micromechanics and Microengineering, 14, 1197-1204(2004). http://adsabs.harvard.edu/abs/2004JMiMi..14.1197Y

    [41] Jung H, Jeong K H. Monolithic polymer microlens arrays with high numerical aperture and high packing density[J]. ACS Applied Materials & Interfaces, 7, 2160-2165(2015). http://www.ncbi.nlm.nih.gov/pubmed/25612820

    [42] Chen C T, Tseng Z F, Chiu C L et al. Self-aligned hemispherical formation of microlenses from colloidal droplets on heterogeneous surfaces[J]. Journal of Micromechanics and Microengineering, 19, 025002(2009). http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2009JMiMi..19b5002C&db_key=PHY&link_type=EJOURNAL

    Xinxue Wu, Chaolong Fang, Zhihong Li, Yaoju Zhang. Simple and High-Efficiency Preparation Method of Biometric 3D Artificial Compound Eyes for Wide-Field Imaging[J]. Laser & Optoelectronics Progress, 2021, 58(12): 1236001
    Download Citation