• High Power Laser Science and Engineering
  • Vol. 10, Issue 6, 06000e34 (2022)
Simon Roeder1、2、*, Yannik Zobus1、2, Christian Brabetz1, and Vincent Bagnoud1、2、3
Author Affiliations
  • 1GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
  • 2Technische Universität Darmstadt, Darmstadt, Germany
  • 3Helmholtz-Institut Jena, Jena, Germany
  • show less
    DOI: 10.1017/hpl.2022.18 Cite this Article Set citation alerts
    Simon Roeder, Yannik Zobus, Christian Brabetz, Vincent Bagnoud. How the laser beam size conditions the temporal contrast in pulse stretchers of chirped-pulse amplification lasers[J]. High Power Laser Science and Engineering, 2022, 10(6): 06000e34 Copy Citation Text show less

    Abstract

    In this work, we propose and verify experimentally a model that describes the concomitant influence of the beam size and optical roughness on the temporal contrast of optical pulses passing through a pulse stretcher in chirped-pulse amplification laser systems. We develop an analytical model that is capable of predicting the rising edge caused by the reflection from an optical element in a pulse stretcher, based on the power spectral density of the surface and the spatial beam profile on the surface. In an experimental campaign, we characterize the temporal contrast of a laser pulse that passed through either a folded or an unfolded stretcher design and compare these results with the analytical model. By varying the beam size for both setups, we verify that optical elements in the near- and the far-field act opposed to each with respect to the temporal contrast and that the rising edge caused by a surface benefits from a larger spatial beam size on that surface.
    $$\begin{align}E\left(\omega \right)={E}_0\left(\omega \right){e}^{i\delta \phi \left(\omega \right)},\end{align}$$ ((1))

    View in Article

    $$\begin{align}\delta \phi \left(\omega \right)=\left(4\pi /{\lambda}_0\right)\cdot H\left(\omega \right),\end{align}$$ ((2))

    View in Article

    $$\begin{align}E\left(\omega \right)=\int f\left[x-{a}_{\omega}\omega \right]{e}^{{i}\delta \phi ({x})}{\textrm{d}xE}_0\left(\omega \right).\end{align}$$ ((3))

    View in Article

    $$\begin{align}\hspace{-12pt}E\left(\omega \right)=\int f\left(x-{a}_{\omega}\omega \right)\left[1+ i\delta \phi (x)\right]{\textrm{d}xE}_0\left(\omega \right),\end{align}$$ ((4))

    View in Article

    $$\begin{align}\hspace{40pt}={E}_0\left(\omega \right)+i\int f\left(x-{a}_{\omega}\omega \right)\delta \phi (x){\textrm{d}xE}_0\left(\omega \right),\end{align}$$ ((5))

    View in Article

    $$\begin{align}&\tilde{E}(t)=\notag\\&{\tilde{E}}_0(t)+ i\left[\int \int {e}^{{i}\omega {t}}f\left(x-{a}_{\omega}\omega \right)\delta \phi (x) \textrm{d}\omega \textrm{d}x\right]\circledast {\tilde{E}}_0(t),\end{align}$$ ((6))

    View in Article

    $$\begin{align}&\hspace{-10pt}\tilde{E}(t)=\notag\\&\hspace{-10pt}{\tilde{E}}_0(t)+ \left[\int {e}^{-{i}\frac{x^{\prime }}{{a}_{\omega }}{t}}f\left({{x}}^{\prime}\right)\frac{\textrm{d}{x}^{\prime }}{-{a}_{\omega }}\int {e}^{{i}\frac{{x}}{{a}_{\omega }}t}\delta \phi (x) \textrm{d}x\right]\circledast {\tilde{E}}_0(t).\end{align}$$ ((7))

    View in Article

    $$\begin{align}E(t)={\tilde{E}}_0(t)-\frac{i}{a_{\omega }}\left[\tilde{f}\left(t/{a}_{\omega}\right)\tilde{\delta}\phi \left(t/{a}_{\omega}\right)\right]\circledast {\tilde{E}}_0(t).\end{align}$$ ((8))

    View in Article

    $$\begin{align*}I(t)={I}_0(t)+\frac{1}{a_{\omega}^2}{\left|\left[\tilde{f}\left(t/{a}_{\omega}\right)\tilde{\delta}\phi \left(t/{a}_{\omega}\right)\right]\circledast {\tilde{E}}_0(t)\right|}^2\end{align*}$$ ()

    View in Article

    $$\begin{align}-\frac{2}{a_{\omega }}\mathbf{\operatorname{Im}}\left\{{\tilde{E}}_0(t)\left\{\left[ {\tilde{f}}^{\ast}\left(t/{a}_{\omega}\right)\tilde{\delta}{\phi}^{\ast}\left(t/{a}_{\omega}\right)\right]\circledast {\tilde{E}}_0^{\ast }(t)\right\}\right\}.\end{align}$$ ((9))

    View in Article

    $$\begin{align}I(t)={I}_0(t)+\frac{1}{a_{\omega}^2}{\left|\left[\tilde{f}\left(t/{a}_{\omega}\right)\tilde{\delta}\phi \left(t/{a}_{\omega}\right)\right]\circledast {\tilde{E}}_0(t)\right|}^2.\end{align}$$ ((10))

    View in Article

    $$\begin{align}I(t)={I}_0(t)+\frac{\varepsilon_{s}}{a_{\omega}^2}{\left|\hspace{1pt}\tilde{f}\left(t/{a}_{\omega}\right)\tilde{\delta}\phi \left(t/{a}_{\omega}\right)\right|}^2,\end{align}$$ ((11))

    View in Article

    $$\begin{align}\mathrm{PSD}={\left|\tilde{H}\left(t/{a}_{\omega}\right)\right|}^2\Delta k,\end{align}$$ ((12))

    View in Article

    $$\begin{align}I(t)={I}_0(t)+\frac{16{\pi}^2{\varepsilon}_{s}}{a_{\omega}^2{\lambda}_0^2\Delta k}{\left|\hspace{1pt}\tilde{f}\left(t/{a}_{\omega}\right)\right|}^2\mathrm{PSD}\left(t/{a}_{\omega}\right).\end{align}$$ ((13))

    View in Article

    Simon Roeder, Yannik Zobus, Christian Brabetz, Vincent Bagnoud. How the laser beam size conditions the temporal contrast in pulse stretchers of chirped-pulse amplification lasers[J]. High Power Laser Science and Engineering, 2022, 10(6): 06000e34
    Download Citation