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Abstract
In this work, we propose and verify experimentally a model that describes the concomitant influence of the beam size
and optical roughness on the temporal contrast of optical pulses passing through a pulse stretcher in chirped-pulse
amplification laser systems. We develop an analytical model that is capable of predicting the rising edge caused by the
reflection from an optical element in a pulse stretcher, based on the power spectral density of the surface and the spatial
beam profile on the surface. In an experimental campaign, we characterize the temporal contrast of a laser pulse that
passed through either a folded or an unfolded stretcher design and compare these results with the analytical model. By
varying the beam size for both setups, we verify that optical elements in the near- and the far-field act opposed to each
with respect to the temporal contrast and that the rising edge caused by a surface benefits from a larger spatial beam size
on that surface.
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1. Introduction

The temporal profile of short laser pulses generated by
high-intensity lasers exhibits complex features commonly
referred to as ‘temporal contrast’. The issue of temporal-
contrast degradation has been studied ever since the inven-
tion of the chirped-pulse amplification (CPA) technique[1]

because of its deleterious effect on high-intensity-laser-
driven experiments. Temporal-contrast mitigation methods
palliating the problem[2] were first proposed, but these sys-
tematically increase the complexity of the laser architecture
by adding pulse-cleaning stages, either in the front-end of
the laser[3–5] or after the pulse compressor at the back-
end of the laser[6–9]. Alternatively, temporal-pedestal-free
amplifiers[10] can be designed to replace the first stage of
amplification in CPA lasers to keep the temporal contrast
in check without adding complexity to the system[11]. As a
consequence, the temporal contrast becomes less and less
limited by pedestals on the ns-scale and prepulses. Instead
the temporal contrast is now mainly limited by a slow rising
edge on the ps-scale, which can be observed systematically
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at laser facilities all around the world[12–16]. While the effect
of the slow rising edge is not as stringent as that of the
nanosecond pedestal, it is still a major problem for laser–
plasma interaction experiments, as the interaction of such a
profile with targets remains difficult to predict and it is thus
a large source of uncertainty.

During the past two decades, it has been established that
this slow rising edge is caused by scattering effects, which
are introduced whenever a spectrally dispersed laser pulse
is reflected from a surface, such as in the stretcher and the
compressor of CPA laser systems. A first indication that
surface defects in the pulse stretcher map onto the residual
spectral phase and influence the pulse profile was given
more than 20 years ago[17]. It took over a decade after the
first description of the pulse distortion before a theoretical
analysis was provided[18] that generalized this effect to all
spatial frequencies of stretcher optics. This, for the first time,
utilized the quantification of the surface imperfections that
the Fourier decomposition of the surface height distribution,
called the power spectral density (PSD), of the relevant
surface provides. Even though it is not explicitly stated in the
paper, this implies that each such reflection contributes to the
rising edge and that the magnitude of it depends on the PSD
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of the surface. This description still neglected the spatial
extension of the beam and assumed the beam to be a 1D
line during the propagation throughout the stretcher. Experi-
ments verified this and showed that either the gratings[19] or
optics[12] could dominate the temporal-contrast degradation,
in a specific setup. In both cases, optical elements of lower
scattering and better quality proved to have a beneficial effect
on the temporal contrast, increasing it by one to three orders
of magnitude.

The incorporation of the beam size into the analytical
description was provided by Bromage et al.[20], who focused
on spatio-temporal coupling effects due to surface scatter-
ing. This model, which neglected diffraction, is adapted to
describe large beam sizes like in a pulse compressor. Based
on this approach, the authors even proposed an experimental
stretcher setup that would prove this theory[21]. Even though
we are not aware that they ever followed up on the experi-
mental verification, the theoretical work provided the means
to repeat the previously made statement that two optical
elements with identical PSD will produce the same rising
edge, and expand on this by recognizing that for identical
PSDs of the surface, the reflection with the smaller beam
size will introduce the larger rising edge.

In a recent work by our group[22], we corroborated the
concomitant relation between beam size and stretcher optics
defects in phase and amplitude on the temporal contrast,
using a 2D self-made ray tracing model that includes diffrac-
tion effects. One result indicated that the folding mirror
commonly found in the Fourier plane of the stretcher might
dominate the rising edge due to the small beam size at this
location. A clear implication of this is that the temporal
contrast can be improved by increasing the surface quality
of this optical element[12] or even completely removing
this optical element from the stretcher design, as recently
demonstrated by Lu et al.[23,24].

In this work, we propose and validate experimentally a new
analytical description of the temporal-contrast degradation
based on the beam size and PSD of optical surfaces in a pulse
stretcher. Furthermore, we propose to use the beam size as
a new method of optical temporal-contrast control that, in
comparison with Hooker et al.[19] and Ranc et al.[12], does
not only influence the offset of the rising edge, but can also
be used to manipulate the steepness of the rising edge.

In the first part, we discuss the analytical derivation of
the relationship among beam size, PSD and rising edge.
Our model differs from previous approaches found in the
literature[18,20] because we consider that beam diffraction
and propagation effects throughout the laser amplifier intro-
duce a spatial averaging effect that must be accounted for.
Afterwards we discuss the experimental stretcher setup that
we used for this proof-of-principle and compare the results
with the predictions that can be made using the analytical
description. In the last part, we discuss the implications of
this for future stretcher designs.

2. Theory

As stated above, the effect that causes the rising edge in
the pulse profile is the coherent scattering introduced by a
disturbed surface acting on a spectrally dispersed laser beam.
The spectral dispersion on a surface can be approximated by
a linear dependency between the position on the surface and
the corresponding angular frequency ω of the pulse. Since
we want to include spatial averaging effects, we assume
each angular frequency to share the same spatial profile
f (x). In addition, we suppose that the position of each
wavelength on the optical element surface x0 follows a linear
dependency with the angular frequency of the spectrum,
such that x0 = aωω, where the scaling factor aω depends
on the stretcher parameters, such as the incident angle and
the grating constant. It is important to note that the linear
approximation is not only valid for stretcher setups with
narrow bandwidths, but also for broader bandwidths, for
example, Nd:glass systems and Ti:Sa systems. This is due
to the fact that the desired length of the stretched pulse is of
the same order of magnitude in most CPA systems, meaning
that the size of the spectrally dispersed beam on the optical
elements in the stretcher is comparable. When this is realized
by adjusting the incidence angle and the grating constant
in the stretcher, the opening angle after the first grating
stays roughly the same when the bandwidth increases, which
dictates the accuracy of the linearization.

In order to find an analytical description of the temporal
profile, we will start with a general electrical field of a short
laser pulse propagating in a stretcher that can be formulated
in the spectral domain as follows:

E (ω) = E0 (ω)eiδφ(ω), (1)

where E0 (ω) is the undisturbed spectral field, and the spec-
tral phase introduced by the reflection from a rough surface
H is given by the following:

δφ (ω) = (4π/λ0) ·H (ω), (2)

calculated from the path difference, using the simplification
that the wavelength is approximately the central wavelength
λ ≈ λ0. If we now want to expand this by a spatial dimen-
sion, we need to consider phase-averaging effects, which
will be included via an integral over the spatial dimension
and the spatial profile f (x). This integral accounts for the
beam diffraction and propagation effects throughout the
laser chain, which was mentioned earlier. For simplicity we
normalize the integral over this spatial profile to unity and
restrict the calculation to only include 1D averaging in the
direction of the beam dispersion, meaning that we neglect the
spatial size of the beam that is not in the direction in which
the grating disperses the beam. Due to the finite acceptance
angle in the stretcher, we will neglect the impact of the
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direction that lies perpendicularly to the spatial dispersion.
Given these assumptions, the spectral field follows then the
following integral:

E (ω) =
∫

f [x−aωω]eiδφ(x)dxE0 (ω) . (3)

Assuming that the disturbance δφ is small compared with
unity, the previous equation can be linearized:

E (ω) =
∫

f (x−aωω) [1+ iδφ(x)]dxE0 (ω), (4)

= E0 (ω)+ i
∫

f (x−aωω)δφ(x)dxE0 (ω), (5)

where we used the normalization of the spatial profile f (x)
in order to execute the spatial integral for the first term.
This linearization treats the scattering in a perturbative
manner. The model can be extended to several surfaces, as
these will just add up in the sum. Supposing that stretcher,
compressor and dispersion compensate each other perfectly
in the CPA system, the resulting pulse will only depend on
the perturbation. The spectral field is coupled to the temporal
field via Fourier transform:

Ẽ(t) =
Ẽ0(t)+ i

[∫ ∫
eiωtf (x−aωω)δφ(x)dωdx

]
� Ẽ0(t), (6)

where the Fourier transform was abbreviated with the nota-
tion Ẽ(t) = F [E (ω)] and � denotes a convolution product.
The double integral can be separated using the substitution
x′ = x−aωω:

Ẽ(t) =
Ẽ0(t)+

[∫
e−i x′

aω
tf

(
x′) dx′

−aω

∫
ei x

aω
t
δφ(x)dx

]
� Ẽ0(t). (7)

This can be interpreted as the (inverse) Fourier transform
from the spatial domain into the spatial frequency domain
at the spatial frequency t/aω. The spatial coordinates are
therefore mapped onto the temporal coordinates via the
spatial-dispersion coefficient aω:

E(t) = Ẽ0(t)− i
aω

[
f̃ (t/aω) δ̃φ (t/aω)

]
� Ẽ0(t). (8)

If we now take the absolute square of this we get the
temporal profile of the laser pulse:

I(t) = I0(t)+ 1
a2

ω

∣∣∣[f̃ (t/aω) δ̃φ (t/aω)
]
� Ẽ0(t)

∣∣∣2

− 2
aω

Im
{

Ẽ0(t)
{[

f̃ ∗ (t/aω) δ̃φ∗ (t/aω)
]
� Ẽ∗

0(t)
}}

. (9)

Since the imaginary part is multiplied with the Fourier
transform of the spectral field Ẽ0, it is close to zero for all
relevant times (significantly larger than the Fourier transform
limited pulse length) and can be neglected, simplifying the
temporal profile to the following:

I(t) = I0(t)+ 1
a2

ω

∣∣∣[f̃ (t/aω) δ̃φ (t/aω)
]
� Ẽ0(t)

∣∣∣2
. (10)

If we now again assume that the variation of f̃ δ̃φ is small
over the duration of the pulse, we can simplify this even
further:

I(t) = I0(t)+ εs

a2
ω

∣∣∣ f̃ (t/aω) δ̃φ (t/aω)

∣∣∣2
, (11)

where εs is the absolute square of the integral over the
unperturbed temporal field. This assumption is only true for
a large enough ratio between the width of f̃ (t/aω) · δ̃φ (t/aω)

and Ẽ0(t). The accuracy of this approximation decreases
with increasing beam size, since the width of the Fourier
transform decreases with increasing beam size. Thus, we
will systematically overestimate the spatial averaging and the
amplitude of the perturbation term when employing large
beam sizes. We will provide an estimate of the uncertainty
caused by this when discussing the beam sizes used in the
experimental campaign.

If we now in a last step recognize how the Fourier trans-
form of the height profile H of the surface is related to the
PSD:

PSD =
∣∣∣H̃ (t/aω)

∣∣∣2
�k, (12)

with the spatial frequency spacing �k, we can find a con-
venient formulation of the temporal profile using Equation
(2):

I(t) = I0(t)+ 16π2εs

a2
ωλ2

0�k

∣∣∣ f̃ (t/aω)

∣∣∣2
PSD(t/aω) . (13)

This formula enables us to predict the rising edge of a
given experimental setup. It allows the calculation of the
rising edge caused by optics in the near-field and in the far-
field for various beam sizes and shapes. While this work
is concerned with the impact of the in-stretcher beam size
on the temporal contrast, it should be noted that Equation
(13) depends on the absolute square of the Fourier transform
of the spatial profile at the considered optical element. If
we consider a mirror in the near-field, the final formula
depends on the spatial intensity distribution in the far-field
and vice versa. Thus, the wavefront in the near-field directly
influences the temporal contrast and aberrations of all kind
can cause temporal-contrast degradation. Therefore, it is
crucial to control the wavefront in order to investigate the
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beam size dependence. We will later on use this insight to
calculate an uncertainty for the temporal profile. It should
be further noted that the PSD, which is originally a function
of the spatial frequency of the surface, is expressed here as a
function over time. How this mapping can be done is covered
in the appendix.

3. Experimental validation

In order to verify our findings, we built a test setup that
included a temporally clean short pulse source, a variable
stretcher in zero-stretch configuration and a scanning cross-
correlator (Sequoia, Amplitude). The short pulses are pro-
duced by a commercial oscillator at a center wavelength of
1040 nm (Mira, Coherent), which are then further amplified
by a homemade ultrafast optical parametric amplifier (uOPA)
to several tens of microjoules and a full width at half
maximum (FWHM) bandwidth around 6.2 nm[11]. We were
able to resolve the temporal profile of these pulses in the
third-order cross-correlator over a dynamic range of nine
orders of magnitude, which is sufficient for this analysis.

For the stretcher setup, we decided to use spherical mirrors
for the telescope and a flat folding mirror that is positioned
in the Fourier plane, as shown in Figure 1. We positioned the
gratings at half the radius of curvature too, in order to achieve
a zero-stretch configuration. In this way, we were able to
measure the temporal profile directly after the stretcher
without the need for a compressor. This allows us to isolate
the influence of the telescope and the folding mirror.

The downside of this setup is that we cannot investigate
the impact of the stretcher gratings since the laser beam
is not spectrally dispersed there, but we expect that the
rising edge caused by gratings can be described analogously
to mirrors. Thus, when investigating the spherical mirror
and the folding mirror is sufficient in order to validate the
analytical solution provided in this work, this solution allows
us to predict the temporal profile for each optical element,
even for the gratings. The described configuration would
require us to stack two gratings on top of each other, which
was cumbersome; thus we introduced a small mirror in
the intermediate field between the spherical mirror and the
grating. Since the spectral dispersion on this mirror is small,
we neglected its impact in the following considerations.

The stretcher, which is depicted in Figure 1, can be either
completely bypassed using a mirror on a magnetic mount or
in two different configurations. The first of these two config-
urations is folded with a flat mirror located in the Fourier
plane and the second is unfolded, ensuring that the beam
size remains equal on all of its optics. All other parameters
of the stretcher were kept constant for both configurations,
especially the angle of incidence into the stretcher and the
grating constant (and thus the spatial-dispersion coefficient
aω).

Figure 1. Schematic of the experimental stretcher setup with three config-
urations. First from the top, the laser pulse bypasses the stretcher using the
bypass mirror; second from the top, the beam enters the stretcher, is incident
on an optical grating (G) (g = 1740 mm−1) and a spherical mirror (R =
3.048 mm), before being reflected from a folding mirror; third from the top,
the pulse enters the stretcher and transverses through an unfolded design
with two gratings and two spherical mirrors. In all three configurations the
beam path ends in the third-order cross-correlator (Sequoia, Amplitude)
with which the temporal profile is measured. The very bottom depicts a
side view of the general setup.

During this experimental campaign, the temporal contrast
was measured in all configurations for two different beam
sizes. The results of those measurements are summarized in
Figure 2, where the background level of each measurement
is given by the dynamic range of the cross-correlator. The
top figure (Figure 2(a)) depicts the measurements done in
the folded design and the bottom figure (Figure 2(b)) depicts
the same measurements done in the unfolded configuration.
Both configurations were used with a smaller beam size of
(1.1 ± 0.05) mm, shown in blue, and with a larger beam size
of (5.8 ± 0.5) mm, shown in red. In order to emphasize the
change of the slope of the rising edge that is caused by the
change in beam size, we included fits to the rising edge for
the folded design. Those fits are expressed as black lines,
with the steeper one corresponding to the smaller beam size
(and thus larger focal spot). It is furthermore noted that the
background level varies with the setup. This is due to the
limited efficiency of the gratings, which decreases the energy
in the pulse and thus the intensity in the cross-correlator. For
the larger beam size this is compensated for by a smaller
focal spot in the cross-correlator, which leads to a higher
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Figure 2. Measured temporal profile of a laser pulse that was amplified in
a uOPA stage (bypass), after transversing through a folded stretcher (a) or an
unfolded stretcher (b). The measurements were executed for a smaller beam
size, indicated as blue in the plot (FWHM = 1.1 mm) and a larger beam
size, indicated as red in the plot (FWHM = 5.8 mm). Shaded areas indicate
uncertainties of the alignment procedure. The black lines indicate the slope
of the rising edge, with the steeper line corresponding to the smaller beam.

intensity. The solution to the analytical approximation is
also indicated in the figures, taking into account measure-
ment uncertainties, indicated as shaded areas. In order to
calculate these solutions and later on their uncertainties, we
had to measure several parameters. Firstly, the undisturbed
temporal profile I0(t) was found using the Fourier transform
of the spectrum, which is a valid approximation since the
difference between the used laser pulse and its Fourier
transform limit is negligible. Secondly, the spatial profile
was obtained using a standard charge-coupled device (CCD)
camera located in the near-field. This profile was then fitted
by a Gaussian distribution, which gives the previously stated
beam sizes.

However, knowing the beam size in the near-field is not
enough to assess the beam size in the far-field, where scat-
tering from the folding mirror dominates. Thus, analytical
Gaussian beam propagation and geometrical considerations
of the impact of the diffraction from the grating onto the
beam size and wavefront were used in order to estimate the

Figure 3. PSD of the spherical mirror and the flat folding mirror used
in the stretcher setup, as commonly expressed in variance over frequency
interval. Since the variance of the height distribution is approximately of
the order of nm and the relevant spatial frequency interval of the order of
mm−1, we chose nm2 mm.

actual beam sizes at the respective optical elements more
accurately. For this we assumed the wavefront to be flat at the
position of the CCD camera (a fact that we will reconsider
shortly, when we calculate the uncertainty of the calculated
rising edge). The incorporation of the beam propagation over
a distance of 2 m has a significant impact on the small
beam size, but is almost negligible for the large beam size.
Lastly, we estimated the PSD of the relevant optics, being the
spherical mirror used for the telescope and the planar folding
mirror. High spatial resolution data on the surface profile
were gathered at the metrology laboratory of CEA-CESTA,
France, using a confocal microscope with a magnification
between 0.5× and 1×. The results of our PSD analysis are
depicted in Figure 3.

Now, for the calculation of the uncertainty of the rising
edge we considered that the wavefront might not necessarily
be flat at the position of the CCD camera. We substituted
the CCD camera with a Shack–Hartmann sensor (SHS).
Besides the estimation of the wavefront, this was necessary
because we had to align a magnifying telescope for the large
beam and compensate diffraction for the small beam. The
accuracy of the SHS, which consists of a micro-lens array
and a CCD chip, is, without absolute calibration, limited by
the specifications of the micro-lens pitch and the size of the
CCD chip (or more accurately, the mean distance between
the pixels). Uncertainties in these two parameters directly
translate to uncertainties in the defocus. We can estimate the
uncertainty of the wavefront measured with the SHS to be
a defocus of roughly ±106x2. This in turn contributes to the
uncertainty of the beam size on the specific surfaces and thus
the rising edge, which is indicated by the shaded areas in
Figure 2. Another factor that contributes to this uncertainty
is the fact that the beam size changes due to Gaussian beam
propagation, especially for the small beam. This is included
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by comparing the results for the measured beam size at the
stretcher input with the results that we find for the beam
size that was calculated using Gaussian beam propagation.
It is noted that the wavefront uncertainty improves the rising
edge for all considered cases, since it increases the beam
size on all surfaces. The uncertainty given by the Gaussian
beam propagation, on the other hand, has a positive impact
in the near-field, since it increases the near-field beam size,
but a negative impact in the far-field, since it decreases
the far-field beam size. While the defocus has some small
impact on the rising edge caused by the spherical mirrors
(Figure 2(b)), its impact is more visible for the folded
design (Figure 2(a)). In this configuration, the calculated
defocus corresponds to an uncertainty in the waist location
in the stretcher telescope of about one Rayleigh range, with
respect to the setup. In other words, the uncertainty of the
wavefront translates to an uncertainty of the beam size on
the folding mirror of about a factor of two, which in turn
can be understood as a change of the slope of the rising
edge by a factor of two. We see that the contrast estimate
given by a perfectly focused beam overestimates the contrast
curve, while an increase of the beam size in the focus due
to the slight defocus gives a better fit to the data. Another
systematic error that has to be taken into account is the
accuracy of the approximation that the Fourier transform
of the spatial profile mapped onto the temporal domain is
considerably wider than the Fourier transform limit of the
spectrum. For the small beam size the error caused by this
approximation can be neglected, especially since the error
would vanish in the otherwise calculated uncertainties. For
the large beam size we can expect to underestimate the width
of the smoothing function that is multiplied with the PSD by
around 3%. At the same time, we overestimate the amplitude
of the term by also around 3%. All this shows that a good
agreement between our experimental data and model exists,
within the measurement uncertainty.

4. Discussion and conclusion

In this work, we showed how the beam size in the pulse
stretcher can condition the rising edge of a laser pulse
amplified by CPA. Our simple analytical model describes
the interplay between beam size, PSD and temporal profile.
This model confirms that the surface PSD of the optical
elements is responsible for the rising edge, but that its shape
and slope are due to the beam size. In particular, the slope
in the stretcher is steeper when the beam size is larger. Fur-
thermore, we conducted an experimental campaign, during
which we were able to push the point in time where the
rising edge breaches the noise level (for the available energy
in this proof-of-principle, it is around 10−9) from 55 to 5 ps,
while using off-the-shelf optical components. The value of
55 ps was the best effort contrast for the folded design, which
we found at the smallest tested beam size and thus largest

focus. For the unfolded design, we observed a switch in the
dependency on the beam size, as the roughness of the optical
elements in the near-field prevails, yielding a better contrast
for the larger beam. In this setup, nine orders of magnitude
contrast at 5 ps were achieved, which is a considerable
improvement compared with the 55 ps that was possible in
the folded setup.

When we compare this with the analytical solutions, we
find a good agreement within the measurement uncertainty
in the behavior of both experiment and theory, as we can
see that the folding mirror and the spherical mirror show an
opposing dependency with the size of the beam, which is
incident in the stretcher. Currently this model is only valid
for beams with an aspect ratio of around one, but it could be
adapted to be applicable to elliptical beams by incorporating
a second spatial integral into the considerations. A further
limit of our analytical model that we find is the cases where,
due to a large beam size, the rising edge is fully suppressed to
times that are not considerably larger than the pulse length,
since the approximation that allowed us to find Equation
(10) is not valid in this region. The study of this region
furthermore requires a measurement of the PSD over a larger
sample size.

A consequence of this work is the necessity to develop new
stretcher designs that do not incorporate optical elements in
their Fourier plane, and at the same time it gives an analytical
formulation that can be used to optimize PSD and beam size
to reach a targeted contrast level. Such design rules can be
derived from the interplay between the rising edge and the
aspect ratio on the surface, which is given by the in-stretcher
beam size and the spatial-dispersion coefficient aω.

Appendix

The mapping of the PSD from spatial frequency to time
can be done using the dependency between position and
angular frequency of the spectrally dispersed laser pulse in
the stretcher x0 = aωω and the numerical correspondence
between x, k and t, ω:

dx = 1
dk (N −1)

, dt = 2π

dω(M −1)
. (14)

Those two can be connected using the derivative of the
mapping between position and angular frequency:

dx
dω

= aω. (15)

Thus, we find the following:

1
dk (N −1)

=dx = dx
dω

dω = aωdω = 2πaω

dt (M −1)
,

⇒ dt = 2πaωdk (N −1)

M −1
, (16)
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as the step size of the time scale. Together with the length
(M) this can be used to define the time array over which
the PSD is known. Physically, this means that each spatial
frequency shifts energy to a specific time before and after
the main peak by adding a spectral phase.
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