• Laser & Optoelectronics Progress
  • Vol. 55, Issue 1, 11401 (2018)
Yang Yongqiang*, Chen Jie, Song Changhui, Wang Di, and Bai Yuchao
Author Affiliations
  • School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
  • show less
    DOI: 10.3788/LOP55.011401 Cite this Article Set citation alerts
    Yang Yongqiang, Chen Jie, Song Changhui, Wang Di, Bai Yuchao. Current Status and Progress on Technology of Selective Laser Melting of Metal Parts[J]. Laser & Optoelectronics Progress, 2018, 55(1): 11401 Copy Citation Text show less
    References

    [1] Peltola S M, Melchels F P, Grijpma D W et al. A review of rapid prototyping techniques for tissue engineering purposes[J]. Annals of Medicine, 40, 268-280(2008). http://www.emeraldinsight.com/servlet/linkout?suffix=b70&dbid=16&doi=10.1108%2FRPJ-03-2012-0023&key=10.1080%2F07853890701881788

    [2] Zhong Y, Rännar L E, Wikman S et al. Additive manufacturing of ITER first wall panel parts by two approaches: Selective laser melting and electron beam melting[J]. Fusion Engineering & Design, 116, 24-33(2017). http://www.sciencedirect.com/science/article/pii/S092037961730042X

    [3] Palcic I, Balažic M, Milfelner M et al. Potential of laser engineered net shaping (LENS) technology[J]. Materials & Manufacturing Processes, 24, 750-753(2009). http://www.tandfonline.com/doi/abs/10.1080/10426910902809776

    [4] Kruth J P, Badrossamay M, Yasa E et al. Part and material properties in selective laser melting of metals. [C]// 16th International Symposium on Electromachining, 1-12(2010).

    [5] Yang X W, Yang Y Q, Liu Y et al. Study on dimensional accuracy of typical geometric features manufactured by selective laser melting[J]. Chinese Journal of Lasers, 42, 0303004(2015).

    [6] Manakari V, Parande G, Gupta M. Selective laser melting of magnesium and magnesium alloy powders: A review[J], 7, 2(2016). http://www.researchgate.net/publication/311957511_Selective_Laser_Melting_of_Magnesium_and_Magnesium_Alloy_Powders_A_Review

    [7] Loh L E, Chua C K, Yeong W Y et al. Numerical investigation and an effective modelling on the Selective Laser Melting (SLM) process with aluminium alloy 6061[J]. International Journal of Heat & Mass Transfer, 80, 288-300(2015). http://www.sciencedirect.com/science/article/pii/S0017931014008060

    [8] Li X P, Humbeeck J V, Kruth J P. Selective laser melting of weak-textured commercially pure titanium with high strength and ductility: A study from laser power perspective[J]. Materials & Design, 116, 352-358(2016). http://www.sciencedirect.com/science/article/pii/S0264127516315349

    [9] Kang N, Coddet P, Liao H et al. Macrosegregation mechanism of primary silicon phase in selective laser melting hypereutectic Al-high Si alloy[J]. Journal of Alloys & Compounds, 662, 259-262(2015). http://www.sciencedirect.com/science/article/pii/S0925838815317783

    [10] Buchbinder D, Meiners W, Wissenbach K. et al. Selective laser melting of aluminum die-cast alloy—correlations between process parameters, solidification conditions, and resulting mechanical properties[J]. Journal of Laser Applications, 27, S29205(2015). http://scitation.aip.org/content/lia/journal/jla/27/S2/10.2351/1.4906389

    [11] Prashanth K G, Scudino S, Eckert J. Defining the tensile properties of Al-12Si parts produced by selective laser melting[J]. Acta Materialia, 126, 25-35(2017). http://www.sciencedirect.com/science/article/pii/S135964541630982X

    [12] Seiffert G, Hopkins C, Sutcliffe C. Comparison of high-intensity sound and mechanical vibration for cleaning porous titanium cylinders fabricated using selective laser melting[J]. Journal of Biomedical Materials Research Part B Applied Biomaterials, 105, 117-123(2017). http://pubmedcentralcanada.ca/pmcc/articles/PMC5215742/

    [13] Yan C, Liang H, Hussein A et al. Ti-6Al-4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting[J]. Journal of the Mechanical Behavior of Biomedical Materials, 51, 61-73(2015). http://www.ncbi.nlm.nih.gov/pubmed/26210549

    [14] Wang D, Song C, Yang Y et al. Investigation of crystal growth mechanism during selective laser melting and mechanical property characterization of 316L stainless steel parts[J]. Materials & Design, 100, 291-299(2016). http://www.sciencedirect.com/science/article/pii/S0264127516303951

    [15] Li S, Wei Q S, Shi Y S et al. Microstructure characteristics of inconel 625 superalloy manufactured by selective laser melting[J]. Journal of Materials Science & Technology, 31, 946-952(2015). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=clkj201509013&dbname=CJFD&dbcode=CJFQ

    [16] Gu D, Meng G, Li C et al. Selective laser melting of TiC/Ti bulk nanocomposites: Influence of nanoscale reinforcement[J]. Scripta Materialia, 67, 185-188(2012). http://www.sciencedirect.com/science/article/pii/S1359646212002540

    [17] Zhao X, Li S, Zhang M et al. Comparison of the microstructures and mechanical properties of Ti-6Al-4V fabricated by selective laser melting and electron beam melting[J]. Materials & Design, 95, 21-31(2015). http://www.sciencedirect.com/science/article/pii/S0264127515309928

    [18] Yan A R, Yang T T, Wang Y L et al. Thermal properties and mechanical properties of selective laser melting different layer thicknesses of Ni powder[J]. Chinese Journal of Lasers, 43, 0203004(2016).

    [19] Ding L, Li H X, Wang Y D et al. Heat treatment on microstructure and tensile strength of 316 stainless steel by selective laser melting[J]. Chinese Journal of Lasers, 42, 0406003(2015).

    [20] Zhang K, Liu T T, Zhang C D et al. Study on deformation behavior in selective laser melting based on the analysis of the melt pool data[J]. Chinese Journal of Lasers, 42, 0903007(2015).

    [21] Ankudinov V, Gordeev G A, Krivilyov M D. Numerical simulation of heat transfer and melting of Fe-based powders in SLM processing. [C]//IOP Conference Series: Materials Science and Engineering, 192, 012026(2017).

    [22] Stašic J, Božic D. The effect of NiB additive on surface morphology and microstructure of 316L stainless steel single tracks and layers obtained by SLM[J]. Surface & Coatings Technology, 307, 407-417(2016). http://www.researchgate.net/publication/308042323_The_effect_of_NiB_additive_on_surface_morphology_and_microstructure_of_316L_stainless_steel_single_tracks_and_layers_obtained_by_SLM

    [23] Capek J, Machová M, Fousová M et al. Highly porous, low elastic modulus 316L stainless steel scaffold prepared by selective laser melting[J]. Materials Science & Engineering, 69, 631-639(2016). http://europepmc.org/abstract/MED/27612756

    [24] Zhang H, Nie X J, Zhu H H et al. Study on high strength Al-Cu-Mg alloy fabricated by selective laser melting[J]. Chinese Journal of Lasers, 43, 0503007(2016).

    [25] Casati R, Lemke J N, Alarcon A Z et al. Aging behavior of high-strength Al alloy 2618 produced by selective laser melting[J]. Metallurgical & Materials Transactions A, 48, 1-5(2016). http://link.springer.com/10.1007/s11661-016-3883-y

    [26] Anwar A B, Pham Q C. Selective laser melting of AlSi10Mg: Effects of scan direction, part placement and inert gas flow velocity on tensile strength[J]. Journal of Materials Processing Technology, 240, 388-396(2017). http://www.sciencedirect.com/science/article/pii/S0924013616303648

    [27] Aboulkhair N T, Maskery I, Tuck C et al. On the formation of AlSi10Mg single tracks and layers in selective laser melting: Microstructure and nano-mechanical properties[J]. Journal of Materials Processing Technology, 230, 88-98(2016). http://www.sciencedirect.com/science/article/pii/S0924013615302028

    [28] Prashanth K G, Scudino S, Klauss H J et al. Microstructure and mechanical properties of Al-12Si produced by selective laser melting: Effect of heat treatment[J]. Materials Science & Engineering A, 590, 153-160(2014). http://www.sciencedirect.com/science/article/pii/S0921509313011180

    [29] Urlea V, Brailovski V. Electropolishing and electropolishing-related allowances for powder bed selectively laser-melted Ti-6Al-4V alloy components[J]. Journal of Materials Processing Technology, 242, 1-11(2017). http://www.sciencedirect.com/science/article/pii/S0924013616303958

    [30] Edwards P, Ramulu M. Effect of build direction on the fracture toughness and fatigue crack growth in selective laser melted Ti-6Al-4V[J]. Fatigue & Fracture of Engineering Materials & Structures, 38, 1228-1236(2015). http://onlinelibrary.wiley.com/doi/10.1111/ffe.12303/pdf

    [31] Fox P, Pogson S, Sutcliffe C J et al. Interface interactions between porous titanium/tantalum coatings, produced by Selective Laser Melting (SLM), on a cobalt-chromium alloy[J]. Surface & Coatings Technology, 202, 5001-5007(2008). http://www.sciencedirect.com/science/article/pii/S0257897208003484

    [32] Xiao Z N, Liu T T, Liao W H et al. Microstructure and properties of heat treatment TC4 titanium alloy produced by selective laser melting[J]. Chinese Journal of Lasers, 44, 0902001(2017).

    [33] Zhirnov I V, Podrabinnik P A, Tokbergenov M et al. Optical monitoring and diagnostics of SLM processing for single track formation from Co-Cr alloy[J]. Materials Science Forum, 834, 51-60(2015). http://www.scientific.net/MSF.834.51

    [34] Uhlmann E, Bergmann A, Gridin W. Investigation onadditive manufacturing of tungsten carbide-cobalt by selective laser melting[J]. Procedia CIRP, 35, 8-15(2015). http://www.sciencedirect.com/science/article/pii/S2212827115009142

    [35] Lin H, Yang Y Q, Zhang G Q et al. Tribological performance of medical CoCrMo alloy fabricated by selective laser melting[J]. Acta Optica Sinica, 36, 1114003(2016).

    [36] Ventura A P, Wade C A, Pawlikowski G. et al. Mechanical properties and microstructural characterization of Cu-4.3 Pct Sn fabricated by selective laser melting[J]. Metallurgical & Materials Transactions A, 48, 1-10(2016). http://link.springer.com/10.1007/s11661-016-3779-x

    [37] Gargarella P, Kiminami C S, Mazzer E M. et al. Phase formation, thermal stability and mechanical properties of a Cu-Al-Ni-Mn shape memory alloy prepared by selective laser melting[J]. Materials Research, 18, 35-38(2015). http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392015005038914&lng=es&nrm=iso

    [38] Scudino S, Unterdörfer C, Prashanth K G et al. Additive manufacturing of Cu-10Sn bronze[J]. Materials Letters, 156, 202-204(2015). http://www.sciencedirect.com/science/article/pii/S0167577X15007983

    [39] Vilaro T, Colin C, Bartout J D et al. Microstructural and mechanical approaches of the selective laser melting process applied to a nickel-base superalloy[J]. Materials Science & Engineering A, 534, 446-451(2012). http://www.sciencedirect.com/science/article/pii/S0921509311013311

    [40] Rickenbacher L, Etter T, Hövel S et al. High temperature material properties of IN738LC processed by selective laser melting (SLM) technology[J]. Rapid Prototyping Journal, 19, 282-290(2013). http://www.emeraldinsight.com/doi/full/10.1108/13552541311323281

    [41] Trosch T, Strößner J, Völkl R et al. Microstructure and mechanical properties of selective laser melted Inconel 718 compared to forging and casting[J]. Materials Letters, 164, 428-431(2016). http://www.sciencedirect.com/science/article/pii/S0167577X15307850

    [42] Mai S Z, Yang Y Q, Wang D. Study on surface morphology and roughness variation of NiCr alloy curved surface manufactured by selective laser melting[J]. Chinese Journal of Lasers, 42, 1203004(2015).

    [43] Liu Y D[J]. 3D printing of turbo shaft rotor for space turbine was realized for the first time in our country Dual Use Technologies & Products, 2016, 18.

    [44] Brandt M, Sun S J, Leary M et al. High-value SLM aerospace components: From design to manufacture[J]. Advanced Materials Research, 633, 135-147(2013). http://www.scientific.net/AMR.633.135

    [45] Dong P, Chen J L[J]. Current status of selective laser melting for aerospace applications abroad Aerospace Manufacturing Technology, 2014, 1-5.

    [46] Wang D, Wang Y, Wang J et al. Design and fabrication of a precision template for spine surgery using selective laser melting (SLM)[J]. Materials, 9, 608(2016). http://pubmedcentralcanada.ca/pmcc/articles/PMC5456883/

    [47] Song C, Yang Y, Wang Y et al. Personalized femoral component design and its direct manufacturing by selective laser melting[J]. Rapid Prototyping Journal, 22, 330-337(2016). http://www.emeraldinsight.com/doi/full/10.1108/RPJ-02-2014-0020

    [48] Demir A G, Previtali B. Additive manufacturing of cardiovascular CoCr stents by selective laser melting[J]. Materials & Design, 119, 338-350(2017). http://www.sciencedirect.com/science/article/pii/S0264127517301156

    [49] Khorasani A, Gibson I, Goldberg M et al. Production of Ti-6Al-4V acetabular shell using selective laser melting: Possible limitations in fabrication[J]. Rapid Prototyping Journal, 23, 110-121(2016). http://www.researchgate.net/publication/309194687_Production_of_Ti-6Al-4V_Acetabular_Shell_Using_Selective_Laser_Melting_Possible_Limitations_in_Fabrication

    [50] Liverani E, Fortunato A, Leardini A. et al. Fabrication of Co-Cr-Mo endoprosthetic ankle devices by means of selective laser melting (SLM)[J]. Materials & Design, 106, 60-68(2016). http://www.sciencedirect.com/science/article/pii/S0264127516306888

    [51] Taniguchi N, Fujibayashi S, Takemoto M et al. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment[J]. Materials Science & Engineering, 59, 690(2015). http://europepmc.org/abstract/MED/26652423

    [52] Mahshid R, Hansen H N, Højbjerre K L. Strength analysis and modeling of cellular lattice structures manufactured using selective laser melting for tooling applications[J]. Materials & Design, 104, 276-283(2016). http://www.sciencedirect.com/science/article/pii/S0264127516306116

    [53] Armillotta A, Baraggi R, Fasoli S. SLM tooling for die casting with conformal cooling channels[J]. The International Journal of Advanced Manufacturing Technology, 71, 573-583(2014). http://link.springer.com/article/10.1007/s00170-013-5523-7

    [54] Tang L, Wu C, Zhang Z et al. A lightweight structure redesign method based on selective laser melting[J], 6, 280(2016). http://www.researchgate.net/publication/310473344_A_Lightweight_Structure_Redesign_Method_Based_on_Selective_Laser_Melting

    [55] Emmelmann C, Petersena M, Kranza J et al. Bionic lightweight design by laser additive manufacturing (LAM) for aircraft industry[C]. SPIE, 8065, 80650L(2011).

    [56] Liu Y, Yang Y Q, Wang D et al. Study on the clearance feature of non-assembly mechanism manufactured by selective laser melting[J]. Chinese Journal of Lasers, 41, 1103007(2014).

    [57] Wang D, Liu R C, Yang Y Q. Clearance design and process optimization of non-assembly mechanisms fabricated by selective laser melting[J]. Chinese Journal of Lasers, 41, 0203004(2014).

    [58] Zhang G Q, Yang Y Q, Zhang Z M et al. Optimal design of support structures in selective laser melting of parts[J]. Chinese Journal of Lasers, 43, 1202002(2016).

    [59] Liu T T, Zhang C D, Liao W H et al. Experimental analysis of pool behavior in overhang structure fabricated by selective laser melting[J]. Chinese Journal of Lasers, 43, 1202004(2016).

    [60] Grasso M, Laguzza V, Semeraro Q et al. In-process monitoring of selective laser melting: Spatial detection of defects via image data analysis[J]. Journal of Manufacturing Science & Engineering, 139, 051001(2017). http://www.researchgate.net/publication/308265486_In-process_Monitoring_of_Selective_Laser_Melting_Spatial_Detection_of_Defects_via_Image_Data_Analysis

    CLP Journals

    [1] Ge Yanan, Wu Meiping, Mao Yuyi, Han Jitai. Effect of Scanning Strategy on Forming Precision of Titanium Alloy by Selective Laser Melting[J]. Laser & Optoelectronics Progress, 2018, 55(9): 91403

    Yang Yongqiang, Chen Jie, Song Changhui, Wang Di, Bai Yuchao. Current Status and Progress on Technology of Selective Laser Melting of Metal Parts[J]. Laser & Optoelectronics Progress, 2018, 55(1): 11401
    Download Citation