• Photonics Research
  • Vol. 11, Issue 5, 817 (2023)
Zhenhui Zhang1、2, Wei Chen1、2, Dandan Cui1、2, Jie Mi1、2, Gen Mu1、2, Liming Nie3、4、5、*, Sihua Yang1、2, and Yujiao Shi1、2、6、*
Author Affiliations
  • 1MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China
  • 2Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
  • 3School of Medicine, South China University of Technology, Guangzhou 510006, China
  • 4Research Center of Medical Sciences, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
  • 5e-mail: limingnie@gmail.com
  • 6e-mail: shiyuj@scnu.edu.cn
  • show less
    DOI: 10.1364/PRJ.485022 Cite this Article Set citation alerts
    Zhenhui Zhang, Wei Chen, Dandan Cui, Jie Mi, Gen Mu, Liming Nie, Sihua Yang, Yujiao Shi. Collagen fiber anisotropy characterization by polarized photoacoustic imaging for just-in-time quantitative evaluation of burn severity[J]. Photonics Research, 2023, 11(5): 817 Copy Citation Text show less
    References

    [1] World Health. Burns(2018).

    [2] Z. Wu, F. Duan, J. Zhang, S. Li, H. Ma, L. Nie. In vivo dual-scale photoacoustic surveillance and assessment of burn healing. Biomed. Opt. Express, 10, 3425-3433(2019).

    [3] M. G. Jeschke, M. E. van Baar, M. A. Choudhry, K. K. Chung, N. S. Gibran, S. Logsetty. Burn injury. Nat. Rev. Dis. Primers, 6, 11(2020).

    [4] Y. Gao, R. Zoughi. Millimeter wave reflectometry and imaging for noninvasive diagnosis of skin burn injuries. IEEE Trans. Instrum. Meas., 66, 77-84(2017).

    [5] D. G. Armstrong, K. Bauer, G. Bohn, M. Carter, R. Snyder, T. E. Serena. Principles of best diagnostic practice in tissue repair and wound healing: an expert consensus. Diagnostics, 11, 50(2020).

    [6] M. Kaiser, A. Yafi, M. Cinat, B. Choi, A. J. Durkin. Noninvasive assessment of burn wound severity using optical technology: a review of current and future modalities. Burns, 37, 377-386(2011).

    [7] A. Oryan, E. Alemzadeh, A. Moshiri. Burn wound healing: present concepts, treatment strategies and future directions. J. Wound Care, 26, 5-19(2017).

    [8] J. S. Chatterjee. A critical evaluation of the clinimetrics of laser Doppler as a method of burn assessment in clinical practice. J. Burn Care Res., 27, 123-130(2006).

    [9] T. Ida, H. Iwazaki, Y. Kawaguchi, S. Kawauchi, T. Ohkura, K. Iwaya, H. Tsuda, D. Saitoh, S. Sato, T. Iwai. Burn depth assessments by photoacoustic imaging and laser Doppler imaging. Wound Repair Regen., 24, 349-355(2016).

    [10] S. Monstrey, H. Hoeksema, J. Verbelen, A. Pirayesh, P. Blondeel. Assessment of burn depth and burn wound healing potential. Burns, 34, 761-769(2008).

    [11] S. L. Jacques. Optical properties of biological tissues: a review. Phys. Med. Biol., 58, R37-R61(2013).

    [12] V. Ntziachristos. Going deeper than microscopy: the optical imaging frontier in biology. Nat. Methods, 7, 603-614(2010).

    [13] H. Ye, S. De. Thermal injury of skin and subcutaneous tissues: a review of experimental approaches and numerical models. Burns, 43, 909-932(2017).

    [14] M. E. Khani, O. B. Osman, Z. B. Harris, A. Chen, J. W. Zhou, A. J. Singer, M. H. Arbab. Accurate and early prediction of the wound healing outcome of burn injuries using the wavelet Shannon entropy of terahertz time-domain waveforms. J. Biomed. Opt., 27, 116001(2022).

    [15] O. B. Osman, Z. B. Harris, M. E. Khani, J. W. Zhou, A. Chen, A. J. Singer, M. H. Arbab. Deep neural network classification of in vivo burn injuries with different etiologies using terahertz time-domain spectral imaging. Biomed. Opt. Express, 13, 1855-1868(2022).

    [16] O. B. Osman, T. J. Tan, S. Henry, A. Warsen, N. Farr, A. M. McClintic, Y. N. Wang, S. Arbabi, M. H. Arbab. Differentiation of burn wounds in an in vivo porcine model using terahertz spectroscopy. Biomed. Opt. Express, 11, 6528-6535(2020).

    [17] P. Tewari, Z. D. Taylor, D. Bennett, R. S. Singh, M. O. Culjat, C. P. Kealey, J. P. Hubschman, S. White, A. Cochran, E. R. Brown, W. S. Grundfest. Terahertz imaging of biological tissues. Medicine Meets Virtual Reality 18, 653-657(2011).

    [18] S. J. Oh, S. H. Kim, K. Jeong, Y. Park, Y. M. Huh, J. H. Son, J. S. Suh. Measurement depth enhancement in terahertz imaging of biological tissues. Opt. Express, 21, 21299-21305(2013).

    [19] S. Lee, H. Ye, D. Chittajallu, U. Kruger, T. Boyko, J. K. Lukan, A. Enquobahrie, J. Norfeet, S. De. Real-time burn classification using ultrasound imaging. Sci. Rep., 10, 5829(2020).

    [20] Y. M. Khoong, X. Huang, S. Gu, T. Zan. Imaging for thinned perforator flap harvest: current status and future perspectives. Burns Trauma, 9, tkab042(2021).

    [21] W. Choi, E. Y. Park, S. Jeon, Y. Yang, B. Park, J. Ahn, S. Cho, C. Lee, D. K. Seo, J. H. Cho, C. Kim. Three-dimensional multistructural quantitative photoacoustic and US imaging of human feet in vivo. Radiology, 303, 467-473(2022).

    [22] J. Kim, G. Kim, L. Li, P. Zhang, J. Y. Kim, Y. Kim, H. H. Kim, L. V. Wang, S. Lee, C. Kim. Deep learning acceleration of multiscale superresolution localization photoacoustic imaging. Light Sci. Appl., 11, 131(2022).

    [23] L. V. Wang, S. Hu. Photoacoustic tomography: in vivo imaging from organelles to organs. Science, 335, 1458-1462(2012).

    [24] A. B. E. Attia, G. Balasundaram, M. Moothanchery, U. S. Dinish, R. Bi, V. Ntziachristos, M. Olivo. A review of clinical photoacoustic imaging: current and future trends. Photoacoustics, 16, 100144(2019).

    [25] S. Gottschalk, O. Degtyaruk, B. M. Larney, J. Rebling, M. A. Hutter, X. L. Deán-Ben, S. Shoham, D. Razansky. Rapid volumetric optoacoustic imaging of neural dynamics across the mouse brain. Nat. Biomed. Eng., 3, 392-401(2019).

    [26] S. Jeon, J. Kim, D. Lee, J. W. Baik, C. Kim. Review on practical photoacoustic microscopy. Photoacoustics, 15, 100141(2019).

    [27] L. A. Kasatkina, C. Ma, M. E. Matlashov, T. Vu, M. Li, A. A. Kaberniuk, J. Yao, V. V. Verkhusha. Optogenetic manipulation and photoacoustic imaging using a near-infrared transgenic mouse model. Nat. Commun., 13, 2813(2022).

    [28] A. A. Oraevsky, S. L. Jacques, F. K. Tittel. Measurement of tissue optical properties by time-resolved detection of laser-induced transient stress. Appl. Opt., 36, 402-415(1997).

    [29] Z. Zhang, Y. Shi, S. Yang, D. Xing. Subdiffraction-limited second harmonic photoacoustic microscopy based on nonlinear thermal diffusion. Opt. Lett., 43, 2336-2339(2018).

    [30] L. Vionnet, J. Gateau, M. Schwarz, A. Buehler, V. Ermolayev, V. Ntziachristos. 24-MHz scanner for optoacoustic imaging of skin and burn. IEEE Trans. Med. Imaging, 33, 535-545(2014).

    [31] H. F. Zhang, K. Maslov, G. Stoica, L. V. Wang. Imaging acute thermal burns by photoacoustic microscopy. J. Biomed. Opt., 11, 054033(2006).

    [32] K. Liu, Z. Chen, W. Zhou, D. Xing. Towards quantitative assessment of burn based on photoacoustic and optical coherence tomography. J. Biophoton., 13, e202000126(2020).

    [33] P. L. Rice, D. Orgill. Assessment and classification of burn injury(2021).

    [34] J. Heino. The collagen family members as cell adhesion proteins. Bioessays, 29, 1001-1010(2007).

    [35] E. Makrantonaki, C. C. Zouboulis. The skin as a mirror of the aging process in the human organism–state of the art and results of the aging research in the German National Genome Research Network 2 (NGFN-2). Exp. Gerontol., 42, 879-886(2007).

    [36] Z. Zhang, Y. Shi, L. Xiang, D. Xing. Polarized photoacoustic microscopy for vectorial-absorption-based anisotropy detection. Opt. Lett., 43, 5267-5270(2018).

    [37] Y. Qu, L. Li, Y. Shen, X. Wei, T. T. Wong, P. Hu, J. Yao, K. Maslov, L. V. Wang. Dichroism-sensitive photoacoustic computed tomography. Optica, 5, 495-501(2018).

    [38] B. Valeur, M. N. Berberan-Santos. Molecular Fluorescence: Principles and Applications(2012).

    [39] A. Rodger. Circular dichroism and linear dichroism. Encyclopedia of Analytical Chemistry, 1-34(2014).

    [40] C. A. V. Cruz, H. A. Shaban, A. Kress, N. Bertaux, S. Monneret, M. Mavrakis, J. Savatier, S. Brasselet. Quantitative nanoscale imaging of orientational order in biological filaments by polarized superresolution microscopy. Proc. Natl. Acad. Sci. USA, 113, E820-E828(2016).

    [41] M. Yin, Y. Li, Y. Luo, M. Yuan, U. Armato, I. Dal Prà, L. Zhang, D. Zhang, Y. Wei, G. Yang, L. Huang, P. Wang, J. Wu. A novel method for objectively, rapidly and accurately evaluating burn depth via near infrared spectroscopy. Burns Trauma, 9, tkab014(2021).

    [42] A. N.. American National Standard for Safe Use of Lasers(2007).

    [43] A. J. Singer, L. Berruti, H. C. Thode, S. A. McClain. Standardized burn model using a multiparametric histologic analysis of burn depth. Acad. Emerg. Med., 7, 1-6(2000).

    [44] W. Zhou, Z. Chen, Q. Zhou, D. Xing. Optical biopsy of melanoma basal cell carcinoma progression by noncontact photoacoustic and optical coherence tomography: in vivo multi-parametric characterizing tumor microenvironment. IEEE. Trans. Med. Imaging, 39, 1967-1974(2020).

    [45] X. Zhang, J. R. Fincke, C. M. Wynn, M. R. Johnson, R. W. Haupt, B. W. Anthony. Full noncontact laser ultrasound: first human data. Light Sci. Appl., 8, 119(2019).

    [46] Y. Zhou, J. Chen, C. Liu, C. Liu, P. Lai, L. Wang. Single-shot linear dichroism optical-resolution photoacoustic microscopy. Photoacoustics, 16, 100148(2019).

    [47] S. I. Alekseev, M. C. Ziskin. Human skin permittivity determined by millimeter wave reflection measurements. Bioelectromagnetics, 28, 331-339(2007).

    [48] Y. Wang, D. Jiang, H. Lan, F. Gao, F. Gao. Photoacoustic-monitored laser treatment for tattoo removal: a feasibility study. arXiv(2021).

    Zhenhui Zhang, Wei Chen, Dandan Cui, Jie Mi, Gen Mu, Liming Nie, Sihua Yang, Yujiao Shi. Collagen fiber anisotropy characterization by polarized photoacoustic imaging for just-in-time quantitative evaluation of burn severity[J]. Photonics Research, 2023, 11(5): 817
    Download Citation