• Laser & Optoelectronics Progress
  • Vol. 60, Issue 9, 0900002 (2023)
Wenzhen Zou1, Chu Zhang1, Hongmin Jiang1, Liguo Gao2, Meiqiang Fan1, and Tingli Ma1、*
Author Affiliations
  • 1College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, Zhejiang, China
  • 2School of Chemical Engineering, Dalian University of Technology, Panjin 116086, Liaoning, China
  • show less
    DOI: 10.3788/LOP220620 Cite this Article Set citation alerts
    Wenzhen Zou, Chu Zhang, Hongmin Jiang, Liguo Gao, Meiqiang Fan, Tingli Ma. Application of Transition Metal Doping in Perovskite Photovoltaic Devices[J]. Laser & Optoelectronics Progress, 2023, 60(9): 0900002 Copy Citation Text show less
    References

    [1] Dou L T, Yang Y, You J B et al. Solution-processed hybrid perovskite photodetectors with high detectivity[J]. Nature Communications, 5, 5404(2014).

    [2] Wei H T, Fang Y J, Mulligan P et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals[J]. Nature Photonics, 10, 333-339(2016).

    [3] Bao C, Chen Z, Fang Y et al. Low-noise and large-linear-dynamic-range photodetectors based on hybrid-perovskite thin-single-crystals[J]. Advanced Materials, 29, 1703209(2017).

    [4] Lin K B, Xing J, Quan L N et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent[J]. Nature, 562, 245-248(2018).

    [5] Cao Y, Wang N N, Tian H et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures[J]. Nature, 562, 249-253(2018).

    [6] Jiang Q, Zhao Y, Zhang X W et al. Surface passivation of perovskite film for efficient solar cells[J]. Nature Photonics, 13, 460-466(2019).

    [7] Seo J, Noh J H, Seok S I. Rational strategies for efficient perovskite solar cells[J]. Accounts of Chemical Research, 49, 562-572(2016).

    [8] Kojima A, Teshima K, Shirai Y et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 131, 6050-6051(2009).

    [9] Kim M, Jeong J, Lu H Z et al. Conformal quantum dot-SnO2 layers as electron transporters for efficient perovskite solar cells[J]. Science, 375, 302-306(2022).

    [10] Dong Q F, Fang Y J, Shao Y C et al. Solar cells. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals[J]. Science, 347, 967-970(2015).

    [11] Shi D, Adinolfi V, Comin R et al. Solar cells. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals[J]. Science, 347, 519-522(2015).

    [12] Hu M, Bi C, Yuan Y B et al. Stabilized wide bandgap MAPbBrxI3-x perovskite by enhanced grain size and improved crystallinity[J]. Advanced Science, 3, 1500301(2016).

    [13] Zhao B, Abdi-Jalebi M, Tabachnyk M et al. High open-circuit voltages in tin-rich low-bandgap perovskite-based planar heterojunction photovoltaics[J]. Advanced Materials, 29, 1604744(2017).

    [14] Walsh A. Principles of chemical bonding and band gap engineering in hybrid organic-inorganic halide perovskites[J]. The Journal of Physical Chemistry C, 119, 5755-5760(2015).

    [15] Richter J M, Abdi-Jalebi M, Sadhanala A et al. Enhancing photoluminescence yields in lead halide perovskites by photon recycling and light out-coupling[J]. Nature Communications, 7, 13941(2016).

    [16] Shin S S, Yang W S, Noh J H et al. High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100 ℃[J]. Nature Communications, 6, 7410(2015).

    [17] Yong Z J, Guo S Q, Ma J P et al. Doping-enhanced short-range order of perovskite nanocrystals for near-unity violet luminescence quantum yield[J]. Journal of the American Chemical Society, 140, 9942-9951(2018).

    [18] Chen Z, Wang J J, Ren Y H et al. Schottky solar cells based on CsSnI3 thin-films[J]. Applied Physics Letters, 101, 093901(2012).

    [19] Yoon S M, Min H, Kim J B et al. Surface engineering of ambient-air-processed cesium lead triiodide layers for efficient solar cells[J]. Joule, 5, 183-196(2021).

    [20] Gu X J, Xiang W C, Tian Q W et al. Rational surface-defect control via designed passivation for high-efficiency inorganic perovskite solar cells[J]. Angewandte Chemie (International Ed. in English), 60, 23164-23170(2021).

    [21] Beal R E, Slotcavage D J, Leijtens T et al. Cesium lead halide perovskites with improved stability for tandem solar cells[J]. The Journal of Physical Chemistry Letters, 7, 746-751(2016).

    [22] Swarnkar A, Mir W J, Nag A. Can B-site doping or alloying improve thermal-and phase-stability of all-inorganic CsPbX3 (X=Cl, Br, I) perovskites?[J]. ACS Energy Letters, 3, 286-289(2018).

    [23] Wang Z, Shi Z J, Li T T et al. Stability of perovskite solar cells: a prospective on the substitution of the A cation and X anion[J]. Angewandte Chemie (International Ed. in English), 56, 1190-1212(2017).

    [24] Bu T L, Liu X P, Zhou Y et al. A novel quadruple-cation absorber for universal hysteresis elimination for high efficiency and stable perovskite solar cells[J]. Energy & Environmental Science, 10, 2509-2515(2017).

    [25] Shai X X, Zuo L J, Sun P Y et al. Efficient planar perovskite solar cells using halide Sr-substituted Pb perovskite[J]. Nano Energy, 36, 213-222(2017).

    [26] Chen Q, Zhou H P, Song T B et al. Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells[J]. Nano Letters, 14, 4158-4163(2014).

    [27] Guo Y G, Wang Q, Saidi W A. Structural stabilities and electronic properties of high-angle grain boundaries in perovskite cesium lead halides[J]. The Journal of Physical Chemistry C, 121, 1715-1722(2017).

    [28] Bai D L, Zhang J R, Jin Z W et al. Interstitial Mn2+-driven high-aspect-ratio grain growth for low-trap-density microcrystalline films for record efficiency CsPbI2Br solar cells[J]. ACS Energy Letters, 3, 970-978(2018).

    [29] Yao Z, Zhao W G, Chen S J et al. Mn doping of CsPbI3 film towards high-efficiency solar cell[J]. ACS Applied Energy Materials, 3, 5190-5197(2020).

    [30] Tang M X, He B L, Dou D W et al. Toward efficient and air-stable carbon-based all-inorganic perovskite solar cells through substituting CsPbBr3 films with transition metal ions[J]. Chemical Engineering Journal, 375, 121930(2019).

    [31] Saidaminov M I, Kim J, Jain A et al. Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air[J]. Nature Energy, 3, 648-654(2018).

    [32] Liu W, Chu L, Liu N J et al. Efficient perovskite solar cells fabricated by manganese cations incorporated in hybrid perovskites[J]. Journal of Materials Chemistry C, 7, 11943-11952(2019).

    [33] Frolova L A, Anokhin D V, Gerasimov K L et al. Exploring the effects of the Pb2+ substitution in MAPbI3 on the photovoltaic performance of the hybrid perovskite solar cells[J]. The Journal of Physical Chemistry Letters, 7, 4353-4357(2016).

    [34] Klug M T, Osherov A, Haghighirad A A et al. Tailoring metal halide perovskites through metal substitution: influence on photovoltaic and material properties[J]. Energy & Environmental Science, 10, 236-246(2017).

    [35] Almutawah Z S, Watthage S C, Song Z N et al. Enhanced grain size and crystallinity in CH3NH3PbI3 perovskite films by metal additives to the single-step solution fabrication process[J]. MRS Advances, 3, 3237-3242(2018).

    [36] Abdi-Jalebi M, Pazoki M, Philippe B et al. Dedoping of lead halide perovskites incorporating monovalent cations[J]. ACS Nano, 12, 7301-7311(2018).

    [37] Pazoki M, Jacobsson T J, Hagfeldt A et al. Effect of metal cation replacement on the electronic structure of metalorganic halide perovskites: replacement of lead with alkaline-earth metals[J]. Physical Review B, 93, 144105(2016).

    [38] Akin S. Boosting the efficiency and stability of perovskite solar cells through facile molecular engineering approaches[J]. Solar Energy, 199, 136-142(2020).

    [39] Shalan A E, Sharmoukh W, Elshazly A N et al. Dopant-free hole-transporting polymers for efficient, stable, and hysteresis-less perovskite solar cells[J]. Sustainable Materials and Technologies, 26, e00226(2020).

    [40] Zaki A H, Shalan A E, El-Shafeay A et al. Acceleration of ammonium phosphate hydrolysis using TiO2 microspheres as a catalyst for hydrogen production[J]. Nanoscale Advances, 2, 2080-2086(2020).

    [41] Rashad M M, Shalan A E. Hydrothermal synthesis of hierarchical WO3 nanostructures for dye-sensitized solar cells[J]. Applied Physics A, 116, 781-788(2014).

    [42] Shalan A E, Rashad M M, Yu Y H et al. Controlling the microstructure and properties of titania nanopowders for high efficiency dye sensitized solar cells[J]. Electrochimica Acta, 89, 469-478(2013).

    [43] Elseman A M, Zaki A H, Shalan A E et al. TiO2 nanotubes: an advanced electron transport material for enhancing the efficiency and stability of perovskite solar cells[J]. Industrial & Engineering Chemistry Research, 59, 18549-18557(2020).

    [44] Elseman A M, Sajid S, Shalan A E et al. Recent progress concerning inorganic holetransport layers for efficient perovskite solar cells[J]. Applied Physics A, 125, 476(2019).

    [45] Sh Atabaev T. Stable HTM-free organohalide perovskite-based solar cells[J]. Materials Today: Proceedings, 4, 4919-4923(2017).

    [46] Olivera S, Chaitra K, Venkatesh K et al. Cerium dioxide and composites for the removal of toxic metal ions[J]. Environmental Chemistry Letters, 16, 1233-1246(2018).

    [47] Akin S, Arora N, Zakeeruddin S M et al. New strategies for defect passivation in high-efficiency perovskite solar cells[J]. Advanced Energy Materials, 10, 1903090(2020).

    [48] Mudhoo A, Paliya S, Goswami P et al. Fabrication, functionalization and performance of doped photocatalysts for dye degradation and mineralization: a review[J]. Environmental Chemistry Letters, 18, 1825-1903(2020).

    [49] Sengul A B, Asmatulu E. Toxicity of metal and metal oxide nanoparticles: a review[J]. Environmental Chemistry Letters, 18, 1659-1683(2020).

    [50] Shukla S, Oturan M A. Dye removal using electrochemistry and semiconductor oxide nanotubes[J]. Environmental Chemistry Letters, 13, 157-172(2015).

    [51] Mohammed M K A, Dehghanipour M, Younis U et al. Improvement of the interfacial contact between zinc oxide and a mixed cation perovskite using carbon nanotubes for ambient-air-processed perovskite solar cells[J]. New Journal of Chemistry, 44, 19802-19811(2020).

    [52] Akin S, Liu Y H, Dar M I et al. Hydrothermally processed CuCrO2 nanoparticles as an inorganic hole transporting material for low-cost perovskite solar cells with superior stability[J]. Journal of Materials Chemistry A, 6, 20327-20337(2018).

    [53] Kim D H, Han G S, Seong W M et al. Niobium doping effects on TiO2 mesoscopic electron transport layer-based perovskite solar cells[J]. ChemSusChem, 8, 2392-2398(2015).

    [54] Rajamanickam N, Soundarrajan P, Jayakumar K et al. Improve the power conversion efficiency of perovskite BaSnO3 nanostructures based dye-sensitized solar cells by Fe doping[J]. Solar Energy Materials and Solar Cells, 166, 69-77(2017).

    [55] Chen C J, Lee W T, Hu J H et al. Structural diversity and modification in Ni(ii) coordination polymers: a peculiar phenomenon of reversible structural transformation between a 1D ladder and 2D layer[J]. CrystEngComm, 22, 7565-7574(2020).

    [56] Li M, Zhao Y L, Zhu L et al. Performance enhancement of perovskite solar cells via Nb/Ta-doped TiO2 mesoporous layers[J]. Journal of Materials Science: Materials in Electronics, 30, 9038-9044(2019).

    [57] Song J, Li S P, Zhao Y L et al. Performance enhancement of perovskite solar cells by doping TiO2 blocking layer with group VB elements[J]. Journal of Alloys and Compounds, 694, 1232-1238(2017).

    [58] Deng X L, Wang Y Q, Chen Y et al. Yttrium-doped TiO2 compact layers for efficient perovskite solar cells[J]. Journal of Solid State Chemistry, 275, 206-209(2019).

    [59] Zhou H P, Chen Q, Li G et al. Interface engineering of highly efficient perovskite solar cells[J]. Science, 345, 542-546(2014).

    [60] Sandhu S, Saharan C, Buruga S K et al. Micro structurally engineered hysteresis-free high efficiency perovskite solar cell using Zr-doped TiO2 electron transport layer[J]. Ceramics International, 47, 14665-14672(2021).

    [61] Nguyen T M H, Bark C W. Synthesis of cobalt-doped TiO2 based on metal-organic frameworks as an effective electron transport material in perovskite solar cells[J]. ACS Omega, 5, 2280-2286(2020).

    [62] Kim J K, Chai S U, Ji Y F et al. Resolving hysteresis in perovskite solar cells with rapid flame-processed cobalt-doped TiO2[J]. Advanced Energy Materials, 8, 1801717(2018).

    [63] Ren G H, Li Z W, Wu W et al. Performance improvement of planar perovskite solar cells with cobalt-doped interface layer[J]. Applied Surface Science, 507, 145081(2020).

    [64] Wang S, Liu B, Zhu Y et al. Enhanced performance of TiO2-based perovskite solar cells with Ru-doped TiO2 electron transport layer[J]. Solar Energy, 169, 335-342(2018).

    [65] Gu X L, Wang Y F, Zhang T et al. Enhanced electronic transport in Fe3+-doped TiO2 for high efficiency perovskite solar cells[J]. Journal of Materials Chemistry C, 5, 10754-10760(2017).

    [66] Liu X Y, Liu Z Y, Sun B et al. 17.46% efficient and highly stable carbon-based planar perovskite solar cells employing Ni-doped rutile TiO2 as electron transport layer[J]. Nano Energy, 50, 201-211(2018).

    [67] Jiang L L, Wang Z K, Li M et al. Enhanced electrical property of compact TiO2 layer via platinum doping for high-performance perovskite solar cells[J]. Solar RRL, 2, 1800149(2018).

    [68] Jiang Q, Zhang X, You J. SnO2: a wonderful electron transport layer for perovskite solar cells[J]. Small, 14, 1801154(2018).

    [69] Halvani Anaraki E, Kermanpur A, Mayer M T et al. Low-temperature Nb-doped SnO2 electron-selective contact yields over 20% efficiency in planar perovskite solar cells[J]. ACS Energy Letters, 3, 773-778(2018).

    [70] Song J, Xu X X, Wu J H et al. Low-temperature solution-processing high quality Nb-doped SnO2 nanocrystals-based electron transport layers for efficient planar perovskite solar cells[J]. Functional Materials Letters, 12, 1850091(2019).

    [71] Yang G, Lei H, Tao H et al. Reducing hysteresis and enhancing performance of perovskite solar cells using low-temperature processed Y-doped SnO2 nanosheets as electron selective layers[J]. Small, 13, 1601769(2017).

    [72] Noh Y W, Lee J H, Jin I S et al. Tailored electronic properties of Zr-doped SnO2 nanoparticles for efficient planar perovskite solar cells with marginal hysteresis[J]. Nano Energy, 65, 104014(2019).

    [73] Wang P Y, Chen B B, Li R J et al. Cobalt chloride hexahydrate assisted in reducing energy loss in perovskite solar cells with record open-circuit voltage of 1.20 V[J]. ACS Energy Letters, 6, 2121-2128(2021).

    [74] Akin S. Hysteresis-free planar perovskite solar cells with a breakthrough efficiency of 22% and superior operational stability over 2000 H[J]. ACS Applied Materials & Interfaces, 11, 39998-40005(2019).

    [75] Zang Z G, Zeng X F, Du J H et al. Femtosecond laser direct writing of microholes on roughened ZnO for output power enhancement of InGaN light-emitting diodes[J]. Optics Letters, 41, 3463-3466(2016).

    [76] Zang Z G, Nakamura A, Temmyo J. Single cuprous oxide films synthesized by radical oxidation at low temperature for PV application[J]. Optics Express, 21, 11448-11456(2013).

    [77] Chen P Y, Yang S H. Improved efficiency of perovskite solar cells based on Ni-doped ZnO nanorod arrays and Li salt-doped P3HT layer for charge collection[J]. Optical Materials Express, 6, 3651-3669(2016).

    [78] Bagha G, Naffakh-Moosavy H, Mersagh M R. The effect of reduced graphene oxide sheet on the optical and electrical characteristics of Ni-doped and Ag-doped ZnO ETLs in planar perovskite solar cells[J]. Journal of Alloys and Compounds, 870, 159658(2021).

    [79] Xing G C, Mathews N, Sun S Y et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3[J]. Science, 342, 344-347(2013).

    [80] Steim R, Kogler F R, Brabec C J. Interface materials for organic solar cells[J]. Journal of Materials Chemistry, 20, 2499-2512(2010).

    [81] Yip H L, Huang F, Jen A. Interface engineering for organic electronics[J]. Advanced Functional Materials, 20, 1371-1388(2010).

    [82] Schäfer S, Petersen A, Wagner T A et al. Influence of the indium tin oxide/organic interface on open-circuit voltage, recombination, and cell degradation in organic small-molecule solar cells[J]. Physical Review B, 83, 165311(2011).

    [83] Xu Y Z, Shi J J, Lv S T et al. Simple way to engineer metal-semiconductor interface for enhanced performance of perovskite organic lead iodide solar cells[J]. ACS Applied Materials & Interfaces, 6, 5651-5656(2014).

    [84] Cao J, Mo S G, Jing X J et al. Trace surface-clean palladium nanosheets as a conductivity enhancer in hole-transporting layers to improve the overall performances of perovskite solar cells[J]. Nanoscale, 8, 3274-3277(2016).

    [85] Kakavelakis G, Alexaki K, Stratakis E et al. Efficiency and stability enhancement of inverted perovskite solar cells via the addition of metal nanoparticles in the hole transport layer[J]. RSC Advances, 7, 12998-13002(2017).

    [86] Ai L, Fang G J, Yuan L Y et al. Influence of substrate temperature on electrical and optical properties of p-type semitransparent conductive nickel oxide thin films deposited by radio frequency sputtering[J]. Applied Surface Science, 254, 2401-2405(2008).

    [87] Kim J H, Liang P W, Williams S T et al. High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer[J]. Advanced Materials, 27, 695-701(2015).

    [88] Jung J W, Chueh C C, Jen A K Y. A low-temperature, solution-processable, Cu-doped nickel oxide hole-transporting layer via the combustion method for high-performance thin-film perovskite solar cells[J]. Advanced Materials, 27, 7874-7880(2015).

    [89] Chandrasekhar P S, Seo Y H, Noh Y J et al. Room temperature solution-processed Fe doped NiOx as a novel hole transport layer for high efficient perovskite solar cells[J]. Applied Surface Science, 481, 588-596(2019).

    [90] Chen W, Wu Y H, Fan J et al. Understanding the doping effect on NiO: toward high-performance inverted perovskite solar cells[J]. Advanced Energy Materials, 8, 1703519(2018).

    [91] Liu Y, Song J, Qin Y S et al. Cu-doped nickel oxide hole transporting layer via efficient low-temperature spraying combustion method for perovskite solar cells[J]. Journal of Materials Science: Materials in Electronics, 30, 15627-15635(2019).

    [92] Feng M L, Wang M, Zhou H P et al. High-efficiency and stable inverted planar perovskite solar cells with pulsed laser deposited Cu-doped NiOx hole-transport layers[J]. ACS Applied Materials & Interfaces, 12, 50684-50691(2020).

    [93] Jae W J, Chu C C, Alex K Y J et al. A low-temperature, solution-processable, Cu-doped nickel oxide hole-transporting layer via the combustion method for high-performance thin-film perovskite solar cells[J]. Advanced Materials, 27, 7874-7880(2015).

    [94] Wei Y, Yao K, Wang X F et al. Improving the efficiency and environmental stability of inverted planar perovskite solar cells via silver-doped nickel oxide hole-transporting layer[J]. Applied Surface Science, 427, 782-790(2018).

    [95] Hu Z J, Chen D, Yang P et al. Sol-gel-processed yttrium-doped NiO as hole transport layer in inverted perovskite solar cells for enhanced performance[J]. Applied Surface Science, 441, 258-264(2018).

    [96] Lee J H, Noh Y W, Jin I S et al. Efficient planar heterojunction perovskite solar cells employing a solution-processed Zn-doped NiOx hole transport layer[J]. Electrochimica Acta, 284, 253-259(2018).

    [97] Ouyang D, Chen C, Huang Z F et al. Hybrid 3D nanostructure-based hole transport layer for highly efficient inverted perovskite solar cells[J]. ACS Applied Materials & Interfaces, 13, 16611-16619(2021).

    [98] Kotta A, Seo H K. Effect of V-incorporated NiO hole transport layer on the performance of inverted perovskite solar cells[J]. Materials Proceedings, 4, 21(2021).

    [99] Im K, Heo J H, Im S H et al. Scalable synthesis of Ti-doped MoO2 nanoparticle-hole-transporting-material with high moisture stability for CH3NH3PbI3 perovskite solar cells[J]. Chemical Engineering Journal, 330, 698-705(2017).

    [100] Heo J H, Im K, Lee H J et al. Ni, Ti-co-doped MoO2 nanoparticles with high stability and improved conductivity for hole transporting material in planar metal halide perovskite solar cells[J]. Journal of Industrial and Engineering Chemistry, 94, 376-383(2021).

    [101] Kaltenbrunner M, Adam G, Głowacki E D et al. Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air[J]. Nature Materials, 14, 1032-1039(2015).

    [102] Qin P L, Lei H W, Zheng X L et al. Copper-doped chromium oxide hole-transporting layer for perovskite solar cells: interface engineering and performance improvement[J]. Advanced Materials Interfaces, 3, 1500799(2016).

    [103] Ding N, Wang N, Liu S et al. Research progress on doped perovskite materials[J]. Laser & Optoelectronics Progress, 58, 1516011(2021).

    [104] Liu Z Y, Qiao X S, Fan X P. Research progress on spectral conversion materials for solar cells[J]. Laser & Optoelectronics Progress, 58, 1516010(2021).

    [105] Liu H R, Yan X, Yuan X G et al. Solar cells based on bottom-reflectivity-enhanced GaAs radial p-i-n junction nanowire array[J]. Acta Optica Sinica, 41, 2013001(2021).

    [106] Chen C F, Zheng Y, Fang C L. Improvement of luminescence efficiency and stability of CsPbBr3 quantum dot films with microlens array structure[J]. Chinese Journal of Lasers, 48, 1313001(2021).

    Wenzhen Zou, Chu Zhang, Hongmin Jiang, Liguo Gao, Meiqiang Fan, Tingli Ma. Application of Transition Metal Doping in Perovskite Photovoltaic Devices[J]. Laser & Optoelectronics Progress, 2023, 60(9): 0900002
    Download Citation