• Photonics Research
  • Vol. 11, Issue 6, 917 (2023)
Guoping Lin1、2、*, Jingyi Tian1、2, Tang Sun1、2, Qinghai Song1、2, and Yanne K. Chembo3
Author Affiliations
  • 1Ministry of Industry and Information Technology Key Laboratory of Micro-Nano Optoelectronic Information System, School of Science, Harbin Institute of Technology, Shenzhen 518055, China
  • 2Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Shenzhen 518055, China
  • 3Department of Electrical and Computer Engineering & Institute for Research in Electronics and Applied Physics (IREAP), University of Maryland, College Park, Maryland 20742, USA
  • show less
    DOI: 10.1364/PRJ.484727 Cite this Article Set citation alerts
    Guoping Lin, Jingyi Tian, Tang Sun, Qinghai Song, Yanne K. Chembo. Hundredfold increase of stimulated Brillouin-scattering bandwidth in whispering-gallery mode resonators[J]. Photonics Research, 2023, 11(6): 917 Copy Citation Text show less
    References

    [1] E. Ippen, R. Stolen. Stimulated Brillouin scattering in optical fibers. Appl. Phys. Lett., 21, 539-541(1972).

    [2] A. Kobyakov, M. Sauer, D. Chowdhury. Stimulated Brillouin scattering in optical fibers. Adv. Opt. Photon., 2, 1-59(2010).

    [3] B. J. Eggleton, C. G. Poulton, R. Pant. Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits. Adv. Opt. Photon., 5, 536-587(2013).

    [4] G. Lin, A. Coillet, Y. K. Chembo. Nonlinear photonics with high-Q whispering-gallery-mode resonators. Adv. Opt. Photon., 9, 828-890(2017).

    [5] Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, A. L. Gaeta. Tunable all-optical delays via Brillouin slow light in an optical fiber. Phys. Rev. Lett., 94, 153902(2005).

    [6] K. Y. Song, M. G. Herráez, L. Thévenaz. Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering. Opt. Express, 13, 82-88(2005).

    [7] Z. Zhu, D. J. Gauthier, R. W. Boyd. Stored light in an optical fiber via stimulated Brillouin scattering. Science, 318, 1748-1750(2007).

    [8] P. Dainese, P. S. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, A. Khelif. Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres. Nat. Phys., 2, 388-392(2006).

    [9] J.-C. Beugnot, S. Lebrun, G. Pauliat, H. Maillotte, V. Laude, T. Sylvestre. Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre. Nat. Commun., 5, 5242(2014).

    [10] B. Morrison, A. Casas-Bedoya, G. Ren, K. Vu, Y. Liu, A. Zarifi, T. G. Nguyen, D.-Y. Choi, D. Marpaung, S. J. Madden, A. Mitchell, B. J. Eggleton. Compact Brillouin devices through hybrid integration on silicon. Optica, 4, 847-854(2017).

    [11] P. T. Rakich, C. Reinke, R. Camacho, P. Davids, Z. Wang. Giant enhancement of stimulated Brillouin scattering in the subwavelength limit. Phys. Rev. X, 2, 011008(2012).

    [12] R. Botter, K. Ye, Y. Klaver, R. Suryadharma, O. Daulay, G. Liu, J. van den Hoogen, L. Kanger, P. van der Slot, E. Klein, M. Hoekman, C. Roeloffzen, Y. Liu, D. Marpaung. Guided-acoustic stimulated Brillouin scattering in silicon nitride photonic circuits. Sci. Adv., 8, eabq2196(2022).

    [13] K. J. Vahala. Optical microcavities. Nature, 424, 839-846(2003).

    [14] O. Kfir, H. Lourenço-Martins, G. Storeck, M. Sivis, T. R. Harvey, T. J. Kippenberg, A. Feist, C. Ropers. Controlling free electrons with optical whispering-gallery modes. Nature, 582, 46-49(2020).

    [15] S. M. Spillane, T. J. Kippenberg, K. J. Vahala. Ultralow-threshold Raman laser using a spherical dielectric microcavity. Nature, 415, 621-623(2002).

    [16] P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T. J. Kippenberg. Optical frequency comb generation from a monolithic microresonator. Nature, 450, 1214-1217(2007).

    [17] E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, T. J. Kippenberg. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature, 482, 63-67(2012).

    [18] C. Dong, V. Fiore, M. C. Kuzyk, H. Wang. Optomechanical dark mode. Science, 338, 1609-1613(2012).

    [19] J. Zhang, B. Peng, S. Kim, F. Monifi, X. Jiang, Y. Li, P. Yu, L. Liu, Y.-X. Liu, A. Alù, L. Yang. Optomechanical dissipative solitons. Nature, 600, 75-80(2021).

    [20] I. S. Grudinin, A. B. Matsko, L. Maleki. Brillouin lasing with a CaF2 whispering gallery mode resonator. Phys. Rev. Lett., 102, 043902(2009).

    [21] M. Tomes, T. Carmon. Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates. Phys. Rev. Lett., 102, 113601(2009).

    [22] W. Loh, J. Becker, D. C. Cole, A. Coillet, F. N. Baynes, S. B. Papp, S. A. Diddams. A microrod-resonator Brillouin laser with 240 Hz absolute linewidth. New J. Phys., 18, 045001(2016).

    [23] J. Li, H. Lee, K. J. Vahala. Microwave synthesizer using an on-chip Brillouin oscillator. Nat. Commun., 4, 2097(2013).

    [24] J. Li, M.-G. Suh, K. Vahala. Microresonator Brillouin gyroscope. Optica, 4, 346-348(2017).

    [25] S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. Wu, T. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, D. J. Blumenthal. Sub-hertz fundamental linewidth photonic integrated Brillouin laser. Nat. Photonics, 13, 60-67(2019).

    [26] Y.-H. Lai, M.-G. Suh, Y.-K. Lu, B. Shen, Q.-F. Yang, H. Wang, J. Li, S. H. Lee, K. Y. Yang, K. Vahala. Earth rotation measured by a chip-scale ring laser gyroscope. Nat. Photonics, 14, 345-349(2020).

    [27] F. Gyger, J. Liu, F. Yang, J. He, A. S. Raja, R. N. Wang, S. A. Bhave, T. J. Kippenberg, L. Thévenaz. Observation of stimulated Brillouin scattering in silicon nitride integrated waveguides. Phys. Rev. Lett., 124, 013902(2020).

    [28] R. W. Boyd. Nonlinear Optics(2003).

    [29] G. Lin, J. U. Fürst, D. V. Strekalov, N. Yu. Wide-range cyclic phase matching and second harmonic generation in whispering gallery resonators. Appl. Phys. Lett., 103, 181107(2013).

    [30] S. Diallo, J.-P. Aubry, Y. K. Chembo. Effect of crystalline family and orientation on stimulated Brillouin scattering in whispering-gallery mode resonators. Opt. Express, 25, 29934-29945(2017).

    [31] J. W. Jaeken, S. Cottenier. Solving the Christoffel equation: phase and group velocities. Comput. Phys. Commun., 207, 445-451(2016).

    [32] H. M. Kandil, J. D. Greiner, A. C. Ayers, J. F. Smith. Single-crystal elastic constants of MgF2 in the temperature range 4.2–300 K. J. Appl. Phys., 52, 759-763(1981).

    [33] G. P. Agrawal. Nonlinear Fiber Optics(2007).

    [34] G. Lin, T. Sun. Mode crossing induced soliton frequency comb generation in high-Q yttria-stabilized zirconia crystalline optical microresonators. Photon. Res., 10, 731-739(2022).

    [35] V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, L. Maleki. Nonlinear optics and crystalline whispering gallery mode cavities. Phys. Rev. Lett., 92, 043903(2004).

    [36] G. Lin, S. Diallo, R. Henriet, M. Jacquot, Y. K. Chembo. Barium fluoride whispering-gallery-mode disk-resonator with one billion quality-factor. Opt. Lett., 39, 6009-6012(2014).

    [37] G. Lin, Y. Candela, O. Tillement, Z. Cai, V. Lefèvre-Seguin, J. Hare. Thermal bistability-based method for real-time optimization of ultralow-threshold whispering gallery mode microlasers. Opt. Lett., 37, 5193-5195(2012).

    [38] G. Lin, S. Diallo, J. M. Dudley, Y. K. Chembo. Universal nonlinear scattering in ultra-high Q whispering gallery-mode resonators. Opt. Express, 24, 14880-14894(2016).

    [39] G. Lin, Q. Song. Kerr frequency comb interaction with Raman, Brillouin, and second order nonlinear effects. Laser Photon. Rev., 16, 2100184(2022).

    [40] G. Lin, S. Diallo, K. Saleh, R. Martinenghi, J.-C. Beugnot, T. Sylvestre, Y. K. Chembo. Cascaded Brillouin lasing in monolithic barium fluoride whispering gallery mode resonators. Appl. Phys. Lett., 105, 231103(2014).

    [41] A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, R. Morandotti. Micro-combs: a novel generation of optical sources. Phys. Rep., 729, 1-81(2018).

    [42] T. J. Kippenberg, A. L. Gaeta, M. Lipson, M. L. Gorodetsky. Dissipative Kerr solitons in optical microresonators. Science, 361, eaan8083(2018).

    [43] Y. Bai, M. Zhang, Q. Shi, S. Ding, Y. Qin, Z. Xie, X. Jiang, M. Xiao. Brillouin-Kerr soliton frequency combs in an optical microresonator. Phys. Rev. Lett., 126, 063901(2021).

    [44] A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, N. Yu, L. Maleki. Whispering-gallery-mode resonators as frequency references. II. Stabilization. J. Opt. Soc. Am. B, 24, 2988-2997(2007).

    [45] J. Lim, A. A. Savchenkov, E. Dale, W. Liang, D. Eliyahu, V. Ilchenko, A. B. Matsko, L. Maleki, C. W. Wong. Chasing the thermodynamical noise limit in whispering-gallery-mode resonators for ultrastable laser frequency stabilization. Nat. Commun., 8, 8(2017).

    [46] G. Lin, B. Qian, F. Oručević, Y. Candela, J.-B. Jager, Z. Cai, V. Lefèvre-Seguin, J. Hare. Excitation mapping of whispering gallery modes in silica microcavities. Opt. Lett., 35, 583-585(2010).

    [47] W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, L. Maleki. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nat. Commun., 6, 7957(2015).

    [48] E. Lucas, P. Brochard, R. Bouchand, S. Schilt, T. Südmeyer, T. J. Kippenberg. Ultralow-noise photonic microwave synthesis using a soliton microcomb-based transfer oscillator. Nat. Commun., 11, 374(2020).

    Guoping Lin, Jingyi Tian, Tang Sun, Qinghai Song, Yanne K. Chembo. Hundredfold increase of stimulated Brillouin-scattering bandwidth in whispering-gallery mode resonators[J]. Photonics Research, 2023, 11(6): 917
    Download Citation