• Photonics Research
  • Vol. 10, Issue 9, 2091 (2022)
Xin Meng1, Zhiwei Hu1, Xingda Lu1, Wanxia Cao1, Xichang Zhang1, Haowei Li2, Ying Hu3、4, Wei Yi2、5, and Yanhong Xiao3、4、*
Author Affiliations
  • 1Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
  • 2CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
  • 3State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
  • 4Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
  • 5CAS Center For Excellence in Quantum Information and Quantum Physics, Hefei 230026, China
  • show less
    DOI: 10.1364/PRJ.450166 Cite this Article Set citation alerts
    Xin Meng, Zhiwei Hu, Xingda Lu, Wanxia Cao, Xichang Zhang, Haowei Li, Ying Hu, Wei Yi, Yanhong Xiao. Tunable non-Hermiticity through reservoir engineering[J]. Photonics Research, 2022, 10(9): 2091 Copy Citation Text show less
    References

    [1] N. Moiseyev. Non-Hermitian Quantum Mechanics(2011).

    [2] Y. Ashida, Z. Gong, M. Ueda. Non-Hermitian physics. Adv. Phys., 69, 249-435(2020).

    [3] C. Bender, S. Boettcher. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett., 80, 5243-5246(1998).

    [4] R. El-Ganainy, K. Makris, M. Khajavikhan, Z. Musslimani, S. Rotter, D. Christodoulides. Non-Hermitian physics and PT symmetry. Nat. Phys., 14, 11-19(2018).

    [5] Ş. Özdemir, S. Rotter, F. Nori, L. Yang. Parity-time symmetry and exceptional points in photonics. Nat. Mater., 18, 783-798(2019).

    [6] M. Miri, A. Alú. Exceptional points in optics and photonics. Science, 363, eaar7709(2019).

    [7] H. Jing, Ş. Özdemir, Z. Geng, J. Zhang, X. Lü, B. Peng, L. Yang, F. Nori. Optomechanically-induced transparency in parity-time-symmetric microresonators. Sci. Rep., 5, 9663(2015).

    [8] F. Minganti, A. Miranowicz, R. Chhajlany, I. Arkhipov, F. Nori. Hybrid-Liouvillian formalism connecting exceptional points of non-Hermitian Hamiltonians and Liouvillians via postselection of quantum trajectories. Phys. Rev. A, 101, 062112(2020).

    [9] I. Arkhipov, A. Miranowicz, F. Minganti, F. Nori. Liouvillian exceptional points of any order in dissipative linear bosonic systems: coherence functions and switching between PT and anti-PT symmetries. Phys. Rev. A, 102, 033715(2020).

    [10] B. Peng, Ş. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. Bender, F. Nori, L. Yang. Loss-induced suppression and revival of lasing. Science, 346, 328-332(2014).

    [11] Z. Liu, J. Zhang, Ş. K. Özdemir, B. Peng, H. Jing, X. Lü, C. Li, L. Yang, F. Nori, Y. Liu. Metrology with PT-symmetric cavities: enhanced sensitivity near the PT-phase transition. Phys. Rev. Lett., 117, 110802(2016).

    [12] K. Kawabata, Y. Ashida, M. Ueda. Information retrieval and criticality in parity-time-symmetric systems. Phys. Rev. Lett., 119, 190401(2017).

    [13] B. Dóra, M. Heyl, R. Moessner. The Kibble-Zurek mechanism at exceptional points. Nat. Commun., 10, 2254(2019).

    [14] B. Zhou, R. Wang, B. Wang. Renormalization group approach to non-Hermitian topological quantum criticality. Phys. Rev. B, 102, 205116(2020).

    [15] X. Bao, G. Guo, X. Du, H. Gu, L. Tan. The topological criticality in disordered non-Hermitian system. J. Phys. Condens. Matter, 33, 185401(2021).

    [16] S. Yao, Z. Wang. Edge states and topological invariants of non-Hermitian systems. Phys. Rev. Lett., 121, 086803(2018).

    [17] F. Kunst, E. Edvardsson, J. Budich, E. Bergholtz. Biorthogonal bulk-boundary correspondence in non-Hermitian systems. Phys. Rev. Lett., 121, 026808(2018).

    [18] V. Alvarez, J. Barrios, L. Torres. Non-Hermitian robust edge states in one dimension: anomalous localization and eigenspace condensation at exceptional points. Phys. Rev. B, 97, 121401(2018).

    [19] A. McDonald, T. Pereg-Barnea, A. Clerk. Phase-dependent chiral transport and effective non-Hermitian dynamics in a bosonic Kitaev-Majorana chain. Phys. Rev. X, 8, 041031(2018).

    [20] C. Lee, R. Thomale. Anatomy of skin modes and topology in non-Hermitian systems. Phys. Rev. B, 99, 201103(2019).

    [21] T. Lee. Anomalous edge state in a non-Hermitian lattice. Phys. Rev. Lett., 116, 133903(2016).

    [22] S. Yao, F. Song, Z. Wang. Non-Hermitian Chern bands. Phys. Rev. Lett., 121, 136802(2018).

    [23] K. Yokomizo, S. Murakami. Non-Bloch band theory of non-Hermitian systems. Phys. Rev. Lett., 123, 066404(2019).

    [24] L. Li, C. Lee, S. Mu, J. Gong. Critical non-Hermitian skin effect. Nat. Commun., 11, 5491(2020).

    [25] Z. Gong, Y. Ashida, K. Kawabata, K. Takasan, S. Higashikawa, M. Ueda. Topological phases of non-Hermitian systems. Phys. Rev. X, 8, 031079(2018).

    [26] D. Leykam, K. Bliokh, C. Huang, Y. Chong, F. Nori. Edge modes, degeneracies, and topological numbers in non-Hermitian systems. Phys. Rev. Lett., 118, 040401(2017).

    [27] T. Liu, Y. Zhang, Q. Ai, Z. Gong, K. Kawabata, M. Ueda, F. Nori. Second-order topological phases in non-Hermitian systems. Phys. Rev. Lett., 122, 076801(2019).

    [28] T. Liu, J. He, T. Yoshida, Z. Xiang, F. Nori. Non-Hermitian topological Mott insulators in one-dimensional fermionic superlattices. Phys. Rev. B, 102, 235151(2020).

    [29] W. Nie, M. Antezza, Y. Liu, F. Nori. Dissipative topological phase transition with strong system-environment coupling. Phys. Rev. Lett., 127, 250402(2021).

    [30] L. Xiao, X. Zhan, H. Bian, K. Wang, X. Zhang, P. Wang, J. Li, K. Mochizuki, D. Kim, N. Kawakami, W. Yi, H. Obuse, C. Sanders, P. Xue. Observation of topological edge states in parity-time-symmetric quantum walks. Nat. Phys., 13, 1117-1123(2017).

    [31] L. Xiao, K. Wang, X. Zhan, Z. Bian, K. Kawabata, M. Ueda, W. Yi, P. Xue. Observation of critical phenomena in parity-time-symmetric quantum dynamics. Phys. Rev. Lett., 123, 230401(2019).

    [32] L. Xiao, T. Deng, K. Wang, G. Zhu, Z. Wang, W. Yi, P. Xue. Non-Hermitian bulk-boundary correspondence in quantum dynamics. Nat. Phys., 16, 761-766(2020).

    [33] K. Zhao, M. Schaden, Z. Wu. Enhanced magnetic resonance signal of spin-polarized Rb atoms near surfaces of coated cells. Phys. Rev. A, 81, 042903(2010).

    [34] Z. Zhang, Y. Zhang, J. Sheng, L. Yang, M. Mili, D. Christodoulides, B. He, Y. Zhang, M. Xiao. Observation of parity-time symmetry in optically induced atomic lattices. Phys. Rev. Lett., 117, 123601(2016).

    [35] J. Li, A. Harter, J. Liu, L. de Melo, Y. N. Joglekar, L. Luo. Observation of parity-time symmetry breaking transitions in a dissipative Floquet system of ultracold atoms. Nat. Commun., 10, 855(2019).

    [36] S. Lapp, J. Angonga, F. A. An, B. Gadway. Engineering tunable local loss in a synthetic lattice of momentum states. New J. Phys., 21, 045006(2019).

    [37] W. Gou, T. Chen, D. Xie, T. Xiao, T. Deng, B. Gadway, W. Yi, B. Yan. Tunable nonreciprocal quantum transport through a dissipative Aharonov-Bohm ring in ultracold atoms. Phys. Rev. Lett., 124, 070402(2020).

    [38] T. Chen, W. Gou, D. Xie, T. Xiao, W. Yi, J. Jing, B. Yan. Quantum Zeno effects across a parity-time symmetry breaking transition in atomic momentum space. npj Quantum Inf., 7, 78(2021).

    [39] Z. Ren, D. Liu, E. Zhao, C. He, K. K. Pak, J. Li, G. Jo. Topological control of quantum states in non-Hermitian spin-orbit-coupled fermions. Nat. Phys., 18, 385-389(2022).

    [40] P. Peng, W. Cao, C. Shen, W. Qu, J. Wen, L. Jiang, Y. Xiao. Anti-parity-time symmetry with flying atoms. Nat. Phys., 12, 1139-1145(2016).

    [41] T. Gao, E. Estrecho, K. Bliokh, T. Liew, M. Fraser, S. Brodbeck, M. Kamp, C. Schneider, S. Höfling, Y. Yamamoto. Observation of non-Hermitian degeneracies in a chaotic exciton-polariton billiard. Nature, 526, 554-558(2015).

    [42] Y. Wu, W. Liu, J. Geng, X. Song, X. Ye, C. Duan, X. Rong, J. Du. Observation of parity-time symmetry breaking in a single-spin system. Science, 364, 878-880(2019).

    [43] W. Liu, Y. Wu, C. Duan, X. Rong, J. Du. Dynamically encircling an exceptional point in a real quantum system. Phys. Rev. Lett., 126, 170506(2021).

    [44] W. Wang, Y. Zhou, H. Zhang, J. Zhang, M. Zhang, Y. Xie, C. Wu, T. Chen, B. Ou, W. Wu, H. Jing, P. Chen. Observation of PT-symmetric quantum coherence in a single-ion system. Phys. Rev. A, 103, L020201(2021).

    [45] L. Ding, K. Shi, Q. Zhang, D. Shen, X. Zhang, W. Zhang. Experimental determination of PT-symmetric exceptional points in a single trapped ion. Phys. Rev. Lett., 126, 083604(2021).

    [46] M. Naghiloo, M. Abbasi, Y. N. Jogelkar, K. W. Murch. Quantum state tomography across the exceptional point in a single dissipative qubit. Nat. Phys., 15, 1232-1236(2019).

    [47] M. Lukin. Colloquium: trapping and manipulating photon states in atomic ensembles. Rev. Mod. Phys., 75, 457-472(2003).

    [48] W. Cao, X. Lu, X. Meng, J. Sun, H. Shen, Y. Xiao. Reservoir-mediated quantum correlations in non-Hermitian optical system. Phys. Rev. Lett., 124, 030401(2020).

    [49] X. Lu, W. Cao, W. Yi, H. Shen, Y. Xiao. Nonreciprocity and quantum correlations of light transport in hot atoms via reservoir engineering. Phys. Rev. Lett., 126, 223603(2021).

    [50] Y. Xiao, M. Klein, M. Hohensee, L. Jiang, D. Philips, M. Lukin, R. Walsworth. Slow light beam splitter. Phys. Rev. Lett., 101, 043601(2008).

    [51] R. Campos, B. Saleh, M. Teich. Quantum-mechanical lossless beam splitter: SU(2) symmetry and photon statistics. Phys. Rev. A, 40, 1371-1384(1989).

    [52] S. M. Barnett, J. Jekers, A. Gatti. Quantum optics of lossy beam splitters. Phys. Rev. A, 57, 2134-2145(1998).

    [53] M. Balabas, T. Karaulanov, M. Ledbetter, D. Budker. Polarized alkali-metal vapor with minute-long transverse spin-relaxation time. Phys. Rev. Lett., 105, 070801(2010).

    [54] O. Firstenberg, M. Shuker, A. Ron, N. Davidson. Coherent diffusion of polaritons in atomic media. Rev. Mod. Phys., 85, 941-960(2013).

    [55] J. Borregaard, M. Zugenmaier, J. Petersen, H. Shen, G. Vasilakis, K. Jensen, E. Polzik, A. Sørensen. Scalable photonic network architecture based on motional averaging in room temperature gas. Nat. Commun., 7, 11356(2016).

    [56] T. Abi-Salloum. Electromagnetically induced transparency and Autler-Townes splitting: two similar but distinct phenomena in two categories of three-level atomic systems. Phys. Rev. A, 81, 053836(2010).

    [57] H. Sun, Y. Liu, H. Ian, J. You, E. Il’ichev, F. Nori. Electromagnetically inducd transparency and Autler-Townes splitting in superconducting flux quantum circuits. Phys. Rev. A, 89, 063822(2014).

    [58] B. Peng, Ş. K. Özdemir, W. Chen, F. Nori, L. Yang. What is and what is not electromagnetically induced transparency in whispering-gallery microcavities. Nat. Commun., 5, 5082(2014).

    [59] Q. Liu, T. Li, X. Luo, H. Zhao, W. Xiong, Y. Zhang, Z. Chen, J. Liu, W. Chen, F. Nori. Method for identifying electromagnetically induced transparency in a tunable circuit quantum electrodynamics system. Phys. Rev. A, 93, 053838(2016).

    [60] L. He, Y. Liu, S. Yi, C. Sun, F. Nori. Control of photon propagation via electromagnetically induced transparency in lossless media. Phys. Rev. A, 75, 063818(2007).

    [61] R. Wen, C. Zou, X. Zhu, P. Chen, Z. Ou, J. Chen, W. Zhang. Non-Hermitian magnon-photon interference in an atomic ensemble. Phys. Rev. Lett., 122, 253602(2019).

    [62] X. Huang, C. Lu, C. Liang, H. Tao, Y. Liu. Loss-induced nonreciprocity. Light Sci. Appl., 10, 30(2021).

    [63] D. Hao, L. Wang, X. Lu, X. Cao, S. Jia, Y. Hu, Y. Xiao. Topological atomic spinwave lattices by dissipative couplings(2022).

    [64] D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. Joannopoulos, M. Vanwolleghem, C. Doerr, H. Renner. What is—and what is not—an optical isolator. Nat. Photonics, 7, 579-582(2013).

    [65] L. Tzuang, K. Fang, P. Nussenzveig, S. Fan, M. Lipson. Non-reciprocal phase shift induced by an effective magnetic flux for light. Nat. Photonics, 8, 701-705(2014).

    [66] A. Metelmann, A. Clerk. Nonreciprocal photon transmission and amplification via reservoir engineering. Phys. Rev. X, 5, 021025(2015).

    [67] L. Bao, B. Qi, D. Dong, F. Nori. Fundamental limits for reciprocal and nonreciprocal non-Hermitian quantum sensing. Phys. Rev. A, 103, 042418(2021).

    [68] L. Tang, J. Tang, M. Chen, F. Nori, M. Xiao, K. Xia. Quantum squeezing induced optical nonreciprocity. Phys. Rev. Lett., 128, 083604(2022).

    [69] G. Arwas, S. Gadasi, I. Gershenzon, A. Friesem, N. Davidson, O. Raz. Anyonic parity-time symmetric laser. Sci. Adv., 8, 7454(2022).

    [70] K. Kim, M. Sujak, E. Kang, Y. No. Tunable non-Hermiticity in coupled photonic crystal cavities with asymmetric optical gain. Appl. Sci., 10, 8074(2020).

    [71] J. Sun, X. Zhang, W. Qu, E. Mikhailov, I. Novikova, H. Shen, Y. Xiao. Spatial multiplexing of squeezed light by coherence diffusion. Phys. Rev. Lett., 123, 203604(2019).

    Xin Meng, Zhiwei Hu, Xingda Lu, Wanxia Cao, Xichang Zhang, Haowei Li, Ying Hu, Wei Yi, Yanhong Xiao. Tunable non-Hermiticity through reservoir engineering[J]. Photonics Research, 2022, 10(9): 2091
    Download Citation